
Geometry Algebra and Gauss Elimination method
for solving a linear system of equations without

division
Martin Cervenka

Faculty of Applied Sciences
University of West Bohemia

Pilsen, Czech Republic
cervemar@kiv.zcu.cz
0000-0001-9625-1872

Abstract—This paper aims to calculate the Gaussian elimi-
nation method without division operation, which is useful for
cases where the division operation is considerably expensive,
not optimised or inconvenient. To substitute the division, more
multiplication steps are performed. The division is completely
avoided, reaching only 7% longer execution time on a modern
computer. Memory savings and also less multiplication has been
reached in comparison to the state-of-the-art approach.

Index Terms—Gaussian Elimination Division-free Linear equa-
tion system Geometry algebra

I. INTRODUCTION

The Linear system of equations Ax = b is defined by
matrix A of size N × N , where Aij is a coefficient of ith

equation and jth independent variable. The bi is the ith equation
constant coefficient (also called right-hand side of the equa-
tion) and xj are the dependent variable to solve. If the matrix is
rectangular, the system is over-determined/under-determined.
The over-determined system has more rows/equations than
columns/independent variables, and the under-determined is
the opposite. For the sake of simplicity, only square and regular
(with matrix A of size N×N and order N) equation systems
will be considered.

II. GAUSS ELIMINATION METHOD

Although the Gauss elimination method (GEM) with the
complexity of O

�
N3

�
[1] is not optimal in theory [2], it is

commonly used to solve reasonably small matrices, where
its higher asymptotic complexity is suppressed. The basic
idea behind the Gaussian elimination method is the matrix
conversion from its initial form to the identity matrix form,
using only the following operations:

• Multiplying a matrix row with a nonzero scalar value
• Adding a row to another row (or its arbitrary nonzero

multiple)
To solve for vector x, the b will be transformed in the same
fashion as A (often, b is written inside A, separated by a
vertical line). Finding the inversion of the A matrix is the same

This work was supported by the Ministry of Education, Youth and Sports
of the Czech Republic, project SGS-2022-015

problem as the linear equation solution using orthogonal unit
vectors b. All of them will form the identity matrix. Another
way to describe the problem is to apply the same operations
on the identity matrix, as there were applied on the original
matrix A.

The procedure is such that a combination of allowed op-
erations zeroes the first column below the diagonal, then the
second column, the third and so on. In the next step (backward
cycle), the part above the diagonal in the last column is zeroed,
then the second to last till the second column. The final step
is multiplying all rows to obtain the ones on the diagonal.

A "shortcut" also solves the equation system but does not
produce an inverse matrix. The shortcut lies in the backward
cycle that can be solved directly from the last variable to
the first. Further in the text, this shortcut will be called
the "half-way" Gaussian elimination method, which will be
stated explicitly. Otherwise, the complete Gaussian elimination
method is meant.

In the case of the rectangular matrix, the approach would
be the same as described here for the square matrix. However,
the same restrictions apply to this approach as to the original
GEM method (mainly the rank of the matrix should equal the
number of variables in obtaining a single solution).

A. Partial pivoting

Partial pivoting is the computational step performed in the
forward cycle to improve computational accuracy. When a new
column is zeroed below the diagonal, the remaining rows (with
higher indices than the column index) are swapped so that the
pivot will have interesting properties. It is appropriate to select
the pivot with the highest absolute value so that the roundoff
errors will be less significant [3].

B. Algorithm

The Gaussian elimination algorithm is described in Listing
1. The a denotes the one-based indexed matrix A, with the
right-hand side column vector appended to the matrix (so its
final dimension is N × (N + 1)).

2022 IEEE 16th International Scientific Conference on Informatics

979-8-3503-1034-4/22/$31.00 ©2022 IEEE – 55 –

for k := 1 to n-1 do

{

Finds the maximum pivot,

partial pivoting

ii := max_arg(abs(a[i, k]),i=k...n);

if abs(a[ii, k]) <= eps

ERROR ("Matrix_is_singular!");

exit;

swap_rows (k, ii); # swaps k, ii #

for all rows below pivot

for i := k + 1 to n do

{ # for all remaining elements #

in the current row

for j := k + 1 to n+1 do

a[i, j] := a[i, j] - a[k, j]

* (a[i, k] / a[k, k]);

fill lower triangular matrix

with zeros if needed

a[i, k] := 0

}

}

for i := n downto 1 do # backward loop #

{

s:=0;

for j := i+1 to k

s := s + a[i,j] * x[j];

x[i] := (a[i,n+1) - s) / a[i,i];

}

Listing 1. Gaussian elimination algorithm [4] (modified). The backward
cycle does not edit the matrix but effectively calculates the result ("half-way"
Gaussian elimination method).

III. PROPOSED APPROACH

The main problem in the Gaussian elimination method is
that the "Gaussian elimination to solve a system of n equa-
tions for n unknowns requires n(n+1)

2 divisions, 2n3+3n2−5n
6

multiplications, and 2n3+3n2−5n
6 subtractions" [5]. Be aware

that the mentioned approach is just a "half-way" Gaussian
elimination because it will create just the upper triangular
matrix and solve it. In the case of the complete Gaussian
elimination (and able to obtain matrix inverse), it will be
even more costly than that. Luckily, the division count can
be reduced or, even better, unnecessary.

Skala’s article [6] proposed a projective extension of the
Euclidean space to reduce the number of division operations;
however, the right-hand side vector can be used instead of
the homogenous coordinate for this purpose, discarding the
homogenous coordinate multiplication step and saving some

memory (not significant in asymptotic case, though). The only
advantage is that there are two variables instead of a single
one, allowing the possibility for better numerical stability.

The idea is that in each step, every other row then a selected
one b can be multiplied by the pivot value from the row p,
using the factor app. Then, the row multiple can be added more
simply, because the factor will be a whole number instead of a
real one. The idea will work for rational numbers and irrational
ones, as the irrational number can be used as a factor for other
rows.

Operation Complexity

Gauss. elim.

/ (Division) 1
2
(N3 −N)

* (Multiplication) 1
2
(N3 −N)

- (Subtraction) 1
2
(N3 −N)

∧ (Bitwise AND) 0

∨ (Bitwise OR) 0

⊕ (Bitwise XOR) 0

Memory N2

Skala’s approach

/ (Division) 0

* (Multiplication) N3 + 2N2 − 3N

- (Subtraction) 3
2
(N3 + 2N2 + 3N)

∧ (Bitwise AND) 1
2
(N3 + 2N2 − 3N)

∨ (Bitwise OR) 1
2
(N3 + 2N2 − 3N)

⊕ (Bitwise XOR) 1
2
(N3 + 2N2 − 3N)

Memory N2 +N

Proposed approach

/ (Division) 0

* (Multiplication) N3 +N2 − 2N

- (Subtraction) 3
2
(N3 + 2N2 + 3N)

∧ (Bitwise AND) 1
2
(N3 + 2N2 − 3N)

∨ (Bitwise OR) 1
2
(N3 + 2N2 − 3N)

⊕ (Bitwise XOR) 1
2
(N3 + 2N2 − 3N)

Memory N2

TABLE I
COMPARISON OF OPERATION COUNT FOR ALL OF THE COMPLETE

GAUSSIAN ELIMINATION METHODS. THE PROPOSED APPROACH IMPROVES
THE MEMORY SIZE AND NUMBER OF MULTIPLICATION OPERATIONS OVER

SKALA’S APPROACH [6].

M. Cervenka · Geometry Algebra and Gauss Elimination method for solving a linear system of equations without divis...

– 56 –

A. Example of direct GEM

Let us assume an example linear equation system:

2x1 − x2 = 5 (1)
3x1 − 4x2 = 6

The classical Gauss Elimination method would look like the
following:

� �
2 1 5
3 4 6 − 3

2 I ∼
� �
2 1 5 − 2

5 II
0 5

2 − 3
2

(2)

∼
� �
2 0 28

5 × 1
2

0 5
2 − 3

2 × 2
5

∼
� �
1 0 2.8
0 1 −0.6

In the first step, the 3
2 of the first row is subtracted from the

second row to eliminate A21. In the second step, 2
5 of the

second row is subtracted from the first row to eliminate A12.
Finally, both rows are multiplied to get the identity matrix on
the left. The solution to the problem can be found on the right.

B. Example of our approach

Let us assume the same example as it was in the III-A
section with linear equation system 2x1 − x2 = 5 and 3x1 −
4x2 = 6. The issue is the division has to be done in every
computation step. To avoid that problem, a different method
is proposed, where each row i, i ̸= p is multiplied by the pivot
(excluding the row containing the pivot) from a chosen row p
(element app) as follows:

� �
2 1 5
3 4 6 ×2 ∼

� �
2 1 5
6 8 12 −3I ∼ (3)

∼
� �
2 1 5 ×5
0 5 −3 ∼

� �
10 5 25 −II
0 5 −3 ∼

∼
� �
10 0 28 × 1

10
0 5 −3 × 1

5
∼

� �
1 0 2.8
0 1 −0.6

This method multiplies each row beforehand, so there is no
need for division. The approach required only N divisions
at the end to determine the result vector (2.8,−0.6). The
main issue here is that the matrix elements may grow/decay
exponentially, making the approach useless for practical use
on the computer. This phenomenon can be seen in Equ. (3),
where diagonal elements grow, for bigger matrix will grow
even more.

IV. IMPLEMENTATION

The proposal has been tested using the C++ programming
language. Skala’s row normalization [6] step has been adopted,
which can also be done without division, mainly using bitwise
operations.

#define FLT_MASK 0x800FFFFFFFFFFFFFL

#define EXP_MIDDLE 0x3FF0000000000000L

// everything else than the exponent part

// of the "b" vector

unsigned right_data = a[i][N] & FLT_MASK;

//exponent part of the IEEE-754

// double precision variable

unsigned right_exp = (right_data ^

a[i][N]) - EXP_MIDDLE;

for(int j=k;j<N; j++){

//exponent part of each element

// in the matrix row

unsigned data = a[i][j] & FLT_MASK;

//shift the exponent to the opposite

//direction of the b vector exponent

a[i][j] = data|

((data^a[i][j])-right_exp);

}

// make exponent of the

// "b" vector element "zero"

a[i][N] = right_data | EXP_MIDDLE;

Listing 2. Exponent normalization step, bitwise implementation, for every
operation (OR, XOR, AND and subtraction), there is one of them performed
inside the loop and one outside.

The normalize function deals with growing/decaying
pivots in such a way that no division is needed. It is done
by the exponent modification, using the same modification for
each row element. As seen on Listing 2, the modification can
be easily done on IEEE 754 floating point values, using just
bitwise operations and a subtraction.

The a variable represents the matrix A, last column of
the a contains also right-hand side of the equation (col-
umn vector b). FLOAT_MASK will mask bits belonging to
the exponent part of the IEEE 754 floating point value,
EXPONENT_MIDDLE is a value with zero exponent (exponent
in IEEE 754 is shifted by 127).

V. EXPERIMENTAL RESULTS

Experiments were performed on the Hilbert matrix, where
each element of the matrix is given by:

Hij =
1

i+ j − 1
(4)

This particular matrix is well-known for its numerical instabil-
ity during its inversion. The condition numbers of the matrix
increase significantly with increasing N (see Tab. II). For
the conditionality, 2-norm condition number of a matrix with
respect to inversion was used (||A||2 · ||A−1||2).

Luckily, the Hilbert inversion matrix is well-known analyt-
ically [7] and can be evaluated by the Equ. (5), so the p-norm
can be calculated more precisely using this inversion.

2022 IEEE 16th International Scientific Conference on Informatics

– 57 –

N Conditionality N Conditionality

1 1.0000e+00 8 1.5257e+10

2 1.9281e+01 9 4.9315e+11

3 5.2406e+02 10 1.6024e+13

4 1.5513e+04 11 5.2227e+14

5 4.7660e+05 12 1.7515e+16

6 1.4951e+07 13 3.3441e+18

7 4.7536e+08 14 6.2008e+17
TABLE II

CONDITION NUMBER OF THE HILBERT MATRIX FOR GIVEN DIMENSION N .

The normalization step has been tested. It has been shown
that the normalization step does not need to be performed in
each computational step, but only if necessary (if the exponent
is big/small enough to make it worthwhile). This approach is
on average about 7% slower than the original, keeping all of
the advantages (no division, no additive memory), see Fig. 1,
Fig. 2 and Fig. 3.

H−1
ij = (−1)

i+j
(i+ j − 1) (5)

�
n+ i− 1

n− j

��
n+ j − 1

n− i

��
i+ j − 2

i− 1

�2

0 100 200 300 400 500
60

70

80

90

100

110

120

130

Size of the matrix (NxN)

S
p
e
e
d
u
p
 [
%

]

Proposed algorithm

Normalize "on demand"

100%

Fig. 1. Running speed of the proposed algorithm in proportion to original
Gaussian elimination method. The Hilbert matrix inverse has been performed
of the given size. The algorithm is slower than the original one, about 10%.
It should be noted that the results may be inaccurate for higher N . The peaks
are caused by the low computation time of all methods.

In Fig. 1 it can be seen that the proposed algorithm is about
10% slower than the original algorithm. The correctness of
the execution can be seen in Fig. 2, where all of the algo-
rithms provide results with (nearly) the same conditionality.
Moreover, these results are the same as in Tab. II, caused by

the fact that the conditionality of the matrix is equal to the
conditionality of its inverse due to the commutativity property.

Forward cycle

Gaussian elimination
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] - a[i][k]

* a[k][j] / a[k][k]

Skala’s algorithm [6]
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] * a[k][k] -

a[i][k] * a[k][j];

a[i][HOMOG] = a[i][HOMOG]

* a[k][k];

normalize(a, k+1, n)

Proposed algorithm
for(int j=k+1; j<=n+1; j++)

a[i][j] := a[i][j] * a[k][k]

- a[i][k] * a[k][j];

normalize(a, k+1, n)

Backward cycle

Gaussian elimination
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] - a[i][k]

* a[k][j] / a[k][k]

Skala’s algorithm [6]
for(int j=k+1; j<=n+1; j++)

a[i][j] = a[i][j] * a[k][k]

- a[i][k] * a[k][j];

a[i][i] := a[i][i] * a[k][k]

- a[i][k] * a[k][i];

a[i][HOMOG] = a[i][HOMOG]

* a[k][k];

normalize(a, k+1, n)

Proposed algorithm
for(int j=k+1; j<=n+1; j++)

a[i][j] := a[i][j] * a[k][k]

- a[i][k] * a[k][j];

a[i][i] := a[i][i] * a[k][k]

- a[i][k] * a[k][i];

normalize(a, k+1, n)
TABLE III

COMPARISON OF THE GAUSSIAN ELIMINATION ALGORITHM AND ITS
MODIFICATIONS. IN THE BACKWARD CYCLE, THE DIVISION-FREE

APPROACHES HAVE TO MODIFY THE DIAGONAL AS WELL.

M. Cervenka · Geometry Algebra and Gauss Elimination method for solving a linear system of equations without divis...

– 58 –

The output error has been measured in Fig. 3. The normal-
ized Frobenius norm of the difference of the matrix pair has
been used:

L2 (X) =

qPN
i=1

PN
j=1

�
H−1

ij −Xij

�2

N2
(6)

The H−1 has been computed analytically; see Equ. (5).

Fig. 2. Conditionality of the resulting inverse matrix. The results show
that the conditionality is nearly the same for all algorithms. The differences
between algorithms are pointless for N > 12 due to the high conditionality.
The conditionality should be even higher, as the analytical solution shows.
GNU/Octave inverse is approaching due to LU decomposition for matrix
inversion.

The difference between the original Gaussian elimination
method, Skala’s modification [6], and the proposed one is
shown on Tab. III.

VI. CONCLUSION & FUTURE WORK

The Gaussian elimination method can be done without divi-
sion and additive memory requirements, which is particularly
useful in scenarios where the division operation is expensive.
There will be no division if it is sufficient to obtain the result
in projective space or N division in the Euclidean space. The
improvement from Skala’s publication [6] is that there is no
need for storage for homogenous coordinates, saving memory
for N variables and saving N2−N multiplication operations.
Despite these facts, the desired running time improvement has
not been reached. Considering execution time, the division
operation probably causes this to be no longer crucial.

Andrilli et al. state, "The partial pivoting technique is used
to avoid roundoff errors that could be caused when dividing
every entry of a row by a pivot value that is relatively small
in comparison to its remaining row entries." [3]. Because
division is unnecessary for this paper, the future task is to
explore possibilities when partial pivoting will be avoided. It is
also true that multiplication is still present. The true challenge
will be to prevent the "nearly" zero factor, which may cause
numerical instabilities.

This approach is particularly useful when the inversion is
made not over a field of real numbers (matrix containing
real numbers), but over a ring, where not all elements have
multiplicative inverses, so dividing, in general, is impossible.
However, the application of this approach is also future work
to be done.

Fig. 3. The result difference between analytical inversion and a computed
one. The differences between the algorithms are negligible.

ACKNOWLEDGMENTS

The author thanks students and colleagues at the University
of West Bohemia, Plzen. Special thanks belong to Vaclav
Skala for his critical comments and discussion. This work was
supported by the Ministry of Education, Youth and Sports of
the Czech Republic, project SGS-2022-015.

REFERENCES

[1] X. G. Fang and G. Havas, “On the worst-case complexity of
integer gaussian elimination,” in Proceedings of the 1997 International
Symposium on Symbolic and Algebraic Computation, ser. ISSAC ’97.
New York, NY, USA: Association for Computing Machinery, 1997, p.
28–31. [Online]. Available: https://doi.org/10.1145/258726.258740

[2] V. Strassen, “Gaussian Elimination is Not Optimal (1969),” in
Ideas That Created the Future: Classic Papers of Computer
Science. The MIT Press, 02 2021. [Online]. Available:
https://doi.org/10.7551/mitpress/12274.003.0032

[3] S. Andrilli and D. Hecker, “Chapter 9 - numerical techniques,” in Elemen-
tary Linear Algebra (Fifth Edition), 5th ed., S. Andrilli and D. Hecker,
Eds. Boston: Academic Press, 2016, pp. 607–666. [Online]. Available:
www.sciencedirect.com/science/article/pii/B9780128008539000098

[4] R. Bronson and G. B. Costa, “Chapter 3 - the inverse,” in
Matrix Methods (Fourth Edition), 4th ed., R. Bronson and G. B.
Costa, Eds. Academic Press, 2021, pp. 93–129. [Online]. Available:
www.sciencedirect.com/science/article/pii/B9780128184196000034

[5] N. S. Rani, “Nondeterministic procedure of solving simulta-
neous equations,” pp. 49–54, 02 2013. [Online]. Available:
www.researchinventy.com/papers/v2i3/G023049054.pdf

[6] V. Skala, “Modified gaussian elimination without division operations,”
AIP Conference Proceedings, vol. 1558, no. 1, pp. 1936–1939, 2013.
[Online]. Available: aip.scitation.org/doi/abs/10.1063/1.4825912

[7] K. Neshat, “Proof that the hilbert matrix is invert-
ible with integer entries,” 05 2020. [Online]. Avail-
able: www.researchgate.net/publication/341215305_Proof_that_the_Hilb
ert_Matrix_is_Invertible_with_Integer_Entries

2022 IEEE 16th International Scientific Conference on Informatics

– 59 –

