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Abstract. The approximation of scattered data is known technique
in computer science. We propose a new strategy for the placement of
radial basis functions respecting points of inflection. The placement of
radial basis functions has a great impact on the approximation quality.
Due to this fact we propose a new strategy for the placement of radial
basis functions with respect to the properties of approximated function,
including the extreme and the inflection points. Our experimental results
proved high quality of the proposed approach and high quality of the final
approximation.
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1 Introduction

The Radial basis functions (RBF) are well known technique for scattered data
approximation in d-dimensional space in general. A significant advantage of the
RBF application is its computational complexity, which is nearly independent of
the problem dimensionality. The formulation is leading to a solution of a linear
system of equations Ax = b. There exists several modifications and specifica-
tions of the RBF use for approximation. The method of RBF was originally
introduced by Hardy in a highly influential paper in 1971 [8,9]. The paper [8]
presented an analytical method for representation of scattered data surfaces.
The method computes the sum of quadric surfaces. The paper also stated the
importance of the location of radial basis functions. This issue is solved by several
papers. Some solutions are proposed by the papers [3,15,16], which use the regu-
larization in the forward selection of radial basis function centers. The paper [31]
presents an improvement for the problem with the behavior of RBF interpolants
near boundaries. The paper [13] compares RBF approximations with different
radial basis functions and different placement of those radial basis functions.
However, all the radial basis functions are placed with some random or uniform
distribution. A bit more sophisticated placement is presented in [14].
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The selection of a shape parameter is another problem. Wrong selection of
this parameter can lead to an ill-conditioned problem or to an inaccurate approx-
imation. The selection of the best shape parameter is thus very important. Forn-
berg and Wright [5] presents an algorithm which avoids this difficulty, and which
allows numerically stable computations of Multi-Quadric RBF interpolants for
all shape parameter values. The paper [29] derives a range of suitable shape
parameters using the analysis of the condition number of the system matrix,
error of energy and irregularity of node distribution. A lot of approaches for
selection of a good value of the shape parameter use some kind of random gen-
erator. Examples of this approaches are [2,20]. The paper [1] proposes a genetic
algorithm to determine a good variable shape parameter, however the algorithm
is very slow.

2 Radial Basis Functions

The Radial basis function (RBF) is a technique for scattered data interpola-
tion [17] and approximation [4,27]. The RBF interpolation and approximation
is computationally more expensive compared to interpolation and approximation
methods that use an information about mesh connectivity, because input data
are not ordered and there is no known relation between them, i.e. tessellation is
not made. Although RBF has a higher computational cost, it can be used for
d-dimensional problem solution in many applications, e.g. solution of partial dif-
ferential equations [11,33], image reconstruction [28], neural networks [7,10,32],
vector fields [24,26], GIS systems [12,18], optics [19] etc. It should be noted that
it does not require any triangulation or tessellation mesh in general. There is
no need to know any connectivity of interpolation points, all points are tied up
only with distances of each other. Using all these distances we can form the
interpolation or approximation matrix, which will be shown later.

The RBF is a function whose value depends only on the distance from its
center point. Due to the use of distance functions, the RBFs can be easily imple-
mented to reconstruct the surface using scattered data in 2D, 3D or higher
dimensional spaces. It should be noted that the RBF interpolation and approx-
imation is not separable by dimension. For the readers reference a compressed
description of the RBF is given in the following paragraphs, for details consider
[25,26].

Radial function interpolants have a helpful property of being invariant under
all Euclidean transformations, i.e. translations, rotations and reflections. It does
not matter whether we first compute the RBF interpolation function and then
apply a Euclidean transformation, or if we first transform all the data and
then compute the radial function interpolants. This is a result of the fact
that Euclidean transformations are characterized by orthonormal transforma-
tion matrices and are therefore two-norm invariant. Radial basis functions can
be divided into two groups according to their influence. The first group are
“global” RBFs [21]. Application of global RBFs usually leads to ill-conditioned
system, especially in the case of large data sets with a large span [13,23]. An
example of “global” RBF is the Gauss radial basis function.
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ϕ(r) = e−εr2
, (1)

where r is the distance of two points and ε is a shape parameter.
The “local” RBFs were introduced in [30] as compactly supported RBF

(CSRBF) and satisfy the following condition:

ϕ(r) = (1 − r)q
+P (r)

=

{
(1 − r)qP (r) 0 ≤ r ≤ 1
0 r > 1

(2)

where P (r) is a polynomial function, r is the distance of two points and q is a
parameter.

2.1 Radial Basis Function Approximation

RBF interpolation was originally introduced by [8] and is based on computing
the distance of two points in any k-dimensional space. The interpolated value,
and approximated value as well, is determined as (see [22]):

h(x) =
M∑

j=1

λjϕ(‖x − ξj‖) (3)

where λj are weights of the RBFs, M is the number of the radial basis func-
tions, ϕ is the radial basis function and ξj are centers of radial basis functions.
For a given dataset of points with associated values, i.e. in the case of scalar
values {xi, hi}N

1 , where N � M , the following overdetermined linear system of
equations is obtained:

hi = h(xi) =
M∑

j=1

λjϕ(‖xi − ξj‖) (4)

for ∀i ∈ {1, . . . , N}
where λj are weights to be computed; see Fig. 1 for a visual interpretation of (3)
or (4) for a 21

2D function. Point in 21
2D is a 2D point associated with a scalar

value.
Equation (4) can be rewritten in a matrix form as

Aλ = h, (5)

where Aij = ϕ(‖xi − ξj‖) is the entry of the matrix in the i−th row and j−th
column, the number of rows N � M , M is the number of unknown weights
λ = [λ1, . . . , λM ]T , i.e. a number of reference points, and h = [h1, . . . , hN ]T is
a vector of values in the given points. The presented system is overdetermined,
i.e. the number of equations N is higher than the number of variables M . This
linear system of equations can be solved by the least squares method (LSE) as

AT Aλ = AT h, (6)
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Fig. 1. Data values, the RBF collocation functions, the resulting interpolant (from
[26]).

where the matrix AT A is symmetrical. Another possibility to solve the overde-
termined system of linear equations Aλ = h is using the QR decomposition.

The RBF approximation can be done using “global” or “local” functions.
When using “global” radial basis functions, the matrix A will be full and ill
conditioned in general. When using “local” radial basis functions, the matrix
A might be sparse, which can be beneficial when solving the overdetermined
system of linear equations Aλ = h.

3 Proposed Approach

We propose a new approach for scattered data approximation of 21
2D functions

using Radial basis functions with respecting inflection points of the function.
Inflection points are computed from the discrete mesh and from curves given
by implicit points. For a simplicity, the proposed approach is demonstrated on
sampled regular grid.

The input 21
2D function f(x, y) is for the sake of simplicity of evaluation

sampled on a regular grid. For a general case neighbours have to be determined,
e.g. by using a kd-tree. One important feature when computing the RBF approx-
imation is the location of radial basis functions. We will show two main groups
of locations, where the radial basis functions should be placed.

The first group are extreme points of the input data set. Most of the radial
basis functions have the property of having its maximum at its center (we will
use only those) and thus it is very suitable to place the radial basis functions at
the locations of extreme points.

The second group are inflection points of the input data set. The inflection
points are important as the surface crosses its tangent plane, i.e. the surface
changes from being concave to being convex, or vice versa. The surface at those
locations should be approximated as accurately as possible in order to maintain
the main features of the surface.
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3.1 Determination of Extreme Points

The local extreme points of the function f(x, y) can be either minimum or max-
imum, i.e.

∂f

∂x
= 0 &

∂f

∂y
= 0. (7)

The decision if a point is a local extreme point can be done using only surround-
ing points. In our case, i.e. regular grid, we use four surrounding points, i.e.
point on the right, left, up and down. In general case, neighbor points need to
be determined, e.g. using a kd-tree. If a point is a local maximum, then all four
surrounding points must be lower. The same also applies to a local minimum,
i.e all four surrounding points must be higher (Fig. 2).

Fig. 2. Location of local extreme points. The values 1 and 8 (green) are local extremes,
i.e. local minimum and local maximum. The value 4 (red) is not a local extreme as the
four surrounding values are higher and smaller as well. (Color figure online)

The situation on the border of the input data set is a little bit different as we
cannot use all four surrounding points, there will always be at least one missing.
One solution is to skip the border of the input data set, however in this way
we could omit some important extremes. Therefore, we determine the extremes
from only three or two surrounding points.

3.2 Determination of Inflection Points

The second group of important locations for radial basis functions placement are
inflection points, which forms actually curves of implicit points. The inflection
points are located where the Gaussian curvature is equal zero. The Gaussian
curvature for 21

2D function f(x, y) is computed as

kgauss =

∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂x∂y

)2

((
∂f

∂x

)2

+
(

∂f

∂y

)2

+ 1

)2 . (8)

The Gaussian curvature is equal zero when

∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂x∂y

)2

= 0. (9)
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This formula is equivalent to the calculation using the Hessian matrix, i.e.∣∣∣∣∣∣∣∣
∂2f

∂x2

∂2f

∂x∂y
∂2f

∂y∂x

∂2f

∂y2

∣∣∣∣∣∣∣∣
= 0. (10)

To find out the locations, where the Gaussian curvature, i.e. the determinant
of Hessian matrix, is equal zero, we can sample the following function from the
input discrete data set.

I(x, y) =
∂2f

∂x2

∂2f

∂y2
−

(
∂2f

∂x∂y

)2

. (11)

An application example of (11) can be seen in Fig. 3.
Now, we need to find out the locations, where this sampled function is equal

zero. We again use the four surrounding points. If at least one is positive and at
least one is negative, then there must be a zero value in between them. For the
simplicity and to speed-up the calculation we consider the center point as the
inflection point (see Figs. 3 and 4 for illustration).

Fig. 3. Location of inflection points. The green positions with values 1 are considered
as inflection points. The red position with value 4 is not an inflection point as all four
surrounding values from (11) are positive. (Color figure online)

The resulting inflection points form a curve of implicit points. It is quite
densely sampled. However, for the purpose of the RBF approximation, we can
reduce the inflection points to obtain a specific number of inflection points or
reduce them as the distance between the closest two is larger than some threshold
value.

3.3 RBF Approximation with Respecting Inflection Points

In the previous chapters, we presented the location of radial basis functions
for 21

2D function approximation. These locations are well placed to capture the
main shape of the function f(x, y). However we should add some more additional
points to cover the whole approximation space. One set of additional radial basis
functions is placed on the border and in the corners. The last additional radial
basis functions are placed at locations with Halton distribution [4]

Halton(p)k =
�log pk�∑

i=0

1
pi+1

(⌊
k

pi

⌋
mod p

)
, (12)
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Fig. 4. An example of 2 1
2
D function with the curves of inflection points. The red curve

represents the location of inflection points calculated using (11). (Color figure online)

where p is the prime number and k is the index of the calculated element, see
Fig. 5 for an example of denerated points distribution. It is recommended to use
different primes for x and y coordinate.

Fig. 5. The example of 103 Halton points. The Halton sequence was generated using
two prime numbers [2, 3], i.e. for x coordinates a Halton sequence with the prime
number 2 and for y coordinates a Halton sequence with the prime number 3.

Knowing all the positions of radial basis functions, we can compute the RBF
approximation of the 21

2D function. For the calculation we use the approach
described in Sect. 2.1.

4 Experimental Results

In this section, we test the proposed approach for Radial basis function approxi-
mation. We tested the approach on all standard testing functions from [6]. In this
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paper we present the experimental results on only three testing functions, while
the results for other testing functions are similar. The selected testing functions
are the following

f1(x, y) =
2
11

(
sin

(
4x2 + 4y2

) − (x + y) +
5
2

)
(13)

f2(x, y) =
3
4
e− 1

4 ((9x−2)2+(9y−2)2) +
3
4
e− 1

49 (9x+1)2− 1
10 (9y+1)2

+
1
2
e− 1

4 (9x−7)2− 1
4 (9y−3)2 − 1

5
e−(9x−4)2−(9y−7)2 (14)

f3(x, y) =
1
9

tanh (9y − 9x) + 1 (15)

All testing functions z = f(x, y) were “normalized” to the interval x, y ∈
〈−1, 1〉 and the “height” z to 〈0, 1〉 in order to easily compare the proposed
approximation properties and approximation error for all testing functions and
we used Gaussian radial basis function in all experiments.

ϕ(r) = e−εr2
. (16)

Only some representative results are presented in this chapter. The visualization
of (13) is in Fig. 6, the visualization of (14) is in Fig. 9 and the visualization of
(15) is in Fig. 12.

The first function (13) is an inclined sine wave. This function contains inflec-
tion points formed in the elliptical shapes as can be seen in Fig. 8b. In the
experiments we used the Gaussian radial basis function with a shape parameter
ε = 1. The visualization of original function together with the RBF approxima-
tion is in Fig. 6. The approximation consists of 246 radial basis functions (78 are
at locations of inflection points and extremes, 24 are at the borders and 144 are
Halton points). It can be seen that the RBF approximation is visually identical
to the original one. Also precision of approximation is very high, see Fig. 8a

To have a more closer look at the quality of RBF approximation, we computed
the isocontours of the both original and approximated functions, see Fig. 7. Those
isocontours are again visualy identical and cannot be seen any difference.

To compare the original and RBF approximated functions, we can compute
the approximation error using the following formula for each point of evaluation.

Err = |f(x, y) − fRBF (x, y)|, (17)

where f(x, y) is the value from input data set and fRBF (x, y) is the approximated
value. Absolute error is used for evaluations data are normalized to 〈−1, 1〉 ×
〈−1, 1〉 × 〈0, 1〉 as described recently. If we compute the approximation error for
all input sample points, then we can calculate the average approximation error,
which is 2.37 · 10−4, and also the histogram of approximation error, see Fig. 8a.
It can be seen that the most common approximation errors are quite low values
below 0.4%. The higher approximation errors appear only few times. This proves
a good properties of the approximation method.
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(a) Original data set. (b) RBF approximation.

Fig. 6. The RBF approximation of 2 1
2
D function (13). The total number of RBF

centers is 246 (red marks). (Color figure online)
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(a) Original data set.
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(b) RBF approximation.

Fig. 7. The comparison of function isocontours.

The next testing function (14) is visualized together with the RBF approxi-
mation in Fig. 9. This function consists of four hills and the RBF approximation
preserves the main shape. The only small difference is at the borders, which can
be seen in more details in Fig. 10. The Gauss function with the shape parameter
ε = 26 was used as radial basis function.

The average approximation error is 2.75 · 10−3 and the distribution of the
approximation error can be seen in the histogram in Fig. 11.



A New Strategy for Scattered Data Approximation Using RBF 331

0 0.002 0.004 0.006 0.008 0.01
100

101

102

103

104

(a) Histogram of approximation error. (b) Inflection and extreme points.

Fig. 8. The histogram (a) of approximation error for the function (13). The horizon-
tal axis represents the absolute approximation error computed as (17). It should be
noted, that the vertical axis is in logarithmic scale. The visualization (b) of all located
inflection and extreme points.

(a) Original data set. (b) RBF approximation.

Fig. 9. The RBF approximation of 2 1
2
D function (14). The total number of RBF

centers is 244 (red marks). (Color figure online)

The last function (15) for testing the proposed RBF approximation is visu-
alized in Fig. 12a. This function is quite exceptional, because it has a sharp cliff
on x = y. Such sharp cliffs are always very hard to approximate using the RBF.
However using the proposed distribution of the radial basis functions, we are
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(a) Original data set.
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(b) RBF approximation.

Fig. 10. The comparison of function isocontours.
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Fig. 11. The histogram of approximation error for the function (14). The horizontal
axis represents the absolute approximation error computed as (17). It should be noted,
that the vertical axis is in logarithmic scale.

able to approximate the sharp cliff quite well, see Fig. 12b. The problem, that
comes up, is the wavy surface for y > x, see more details in Fig. 13. The Gauss
function with the shape parameter ε = 25 was used as the radial basis function.

The average approximation error for this specific function is 1.22 ·10−2. This
result is quite positive as the function is very hard to approximate using the RBF
approximation technique. The histogram of the approximation error is visualized
in Fig. 14.
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(a) Original data set. (b) RBF approximation.

Fig. 12. The RBF approximation of 2 1
2
D function (15). The total number of RBF

centers is 244 (red marks). (Color figure online)
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(a) RBF approximation isocontours.
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(b) Approximation error isocontours.

Fig. 13. The visualization of approximated function isocontours (a). The visualization
of approximation error as isocontours plot (b), please note that the average approxi-
mation error is 1.22 · 10−2.
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Fig. 14. The histogram of approximation error for the function (15). The horizontal
axis represents the absolute approximation error computed as (17). It should be noted,
that the vertical axis is in logarithmic scale.

5 Conclusion

We presented a new approach for approximation of 21
2D scattered data using

Radial basis functions respecting inflection points in the given data set. The RBF
approximation uses the properties of the input data set, namely the extreme
and the inflection points to determine the location of radial basis functions.
This sophisticated placement of radial basis functions significantly improves the
quality of the RBF approximation. It reduces the needed number of radial basis
functions and thus creates even more compressed RBF approximation, too.

In future, the proposed approach is to be extended to approximate 31
2D

scattered data, while utilizing the properties of the input data set for the optimal
placement of radial basis functions. Also efficient finding a shape parameters is
to be explored.
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