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Abstract— Interpolation and approximation methods are wi-
dely used in many areas. They can be divided to methods based
on meshing (tessellation) of the data domain and to meshless
(meshfree) methods, which do not require the domain tessellation
of scattered data. Scattered n-dimensional data radial basis func-
tion (RBF) interpolation and approximation leads to a solution
of linear system of equations.

This contribution presents a new approach to the RBF approx-
imation based on analysis of geometrical properties of signals,
i.e. sampled curves. Also a newly developed radial basis function
was used and proved better precision of approximation.

Experimental comparison of several RBF functions (Gauss,
Thin-Plate Spline, CS-RBF and a new proposed RBF) is de-
scribed with analysis of their properties. Special attention was
taken to the precision of approximation and conditionality issues.
The proposed approach can be extended to a higher dimensional
case and for vector data, e.q. fluid flow, too.

Index Terms—Approximation, Radial basis functions, RBF,
Signal processing, Computer graphics, Meshless methods.

I. INTRODUCTION

Interpolation and approximation of scattered data is re-
quired in many areas. As there is no ordering defined for d-
dimensional case, if d ≥ 1, usually two approaches are taken:
• Tessellation of the data domain, e.g. using Delaunay

triangulation and application of a selected interpolation
or approximation method. However, the Delaunay tessel-
lation has a computational complexity O

(
ndd

2/2e
)

.
This leads high computational complexity and to imple-
mentation problems in the case that d > 2. Another
computational problems can be expected, if smoothness
of the interpolation or approximation is required.

• Use of meshless methods based on Radial Basis Func-
tions (RBF) use leads to a solution of a linear system
of equations Ax = b, in general, and the computational
complexity is nearly independent from the dimension-
ality of the data domain, see Hardy [1], . Even more,
if relevant RBF function is selected, higher degree of
smoothness is obtained. On the other hand, interpolation
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and approximation methods based on meshless approach
usually have a problem with a precision on borders or
on discontinuities, in general. The meshless methods can
be also used for approximation of vector data, i.e. fluid
flow etc. However, some RBFs applications might lead to
numerical problems due to ill-conditioned matrix of the
linear system, especially for large data sets.

Usually, the approximation methods use a general method,
which is not taking directly geometrical properties of the signal
into account, e.g. Singh [2], Skala & Smolik & Nedved [3].
However, if some information on signal geometry can be
extracted from data and used, the approximation should be
more precise and simpler. Such approach has been used by
Majdisova & Skala & Smolik [4]. This approach seems to be
quite complicated, as it is based on properties of cubic curve
in floating data window.

This contribution is focused on the following main aspects:

• how geometrical properties of a signal can be efficiently
used for good and robust approximation,

• how to approximate a signal, i.e. a sampled curves, with
a good precision with a minimal number of radial basis
functions (RBFs),

• what kind of RBFs probably gives better results,
• what are properties of a newly developed RBF in terms

of precision and numerical precision.

As some RBF functions have a parameter, called a shape
parameter, some problems can be expected with an optimal
shape parameter selection or estimation. Some proposal how
to select suitable shape parameters were introduced by Kara-
georghis [5], Wang & Liu [6] for range of shape parameters
generation, Afiatdoust & Esmaeilbeigi [7] presented use of
genetic algorithm. Moreover, Sarra & Sturgill [8] propose
non-deterministic approach based on random shape parameter
generation. However, some experiments recently made by
Skala & Karim & Zabran [9] proved, that there is probably no
optimal constant shape parameter nor one vector of optimal
shape parameters for each RBF.

Another problem is shape parameter selection Karageorghis
[5]. There are two particular cases which may occur in

Informatics 2019 • IEEE 15th International Scientific Conference on Informatics • November 20-22, 2019 • Poprad, Slovakia

978-1-7281-3180-1/19/$31.00 ©2019 IEEE 000451

Authorized licensed use limited to: Univ of West Bohemia in Pilsen. Downloaded on April 21,2022 at 08:54:02 UTC from IEEE Xplore.  Restrictions apply. 



general: approximation will be inaccurate or the problem may
become ill-conditioned. That is why correct shape parameter
selection is needed. Some approaches to select suitable shape
parameters already exists. Approach introduced by Wang &
Liu [6] for example generates range of shape parameters,
Afiatdoust & Esmaeilbeigi [7] presented theirs approach using
genetic algorithm. Moreover, Sarra & Sturgill [8] propose non-
deterministic approach based on random generator. Some re-
cent research have been devoted to variable shape parameters,
i.e, each RBF function has a different shape parameter, e.g.
Majdisova [4], Skala [9].

Application of the RBF interpolation and approximation
in engineering practice can be found in Biancolini [10],
Fasshauer [11], Menandro [12] . Also RBFs are used for vector
field interpolation and approximation, e.g. Smolik [13], [14],
[15], [16], Skala [17], solution of partial differential equations
(PDE) Zhang [18], Neural Networks RBF Yinwey [19] and
reconstruction of implicit curves Cuomo [20]. Comparison of
selected RBFs can be found in Majdisova [21].

II. RBF INTERPOLATION

According to Hardy [22], RBF interpolation is based on
determining the distance of two point (in the d-dimensional
space in general). The interpolation is given in the form:

h (x) =
N∑
j=1

λjϕ (||x− xj ||) =
N∑
j=1

λjϕ (rj) (1)

where ri is the distance from a point x to the point xi. As the
parameter of the function ϕ is a distance of two points in the
d-dimensional space, the interpolation is non-separable by a
dimension. The RFBs will be described in detailed latter on.

For each point xi the interpolating function has to have
value hi. Therefore, we are getting a system of linear equa-
tions:

h (xi) =
N∑
j=1

λjϕ (||xi − xj ||) =
N∑
j=1

λjϕ (rij) (2)

where λj are unknown weights for each radial basis function,
N is the number of given points and ϕ is the radial basis
function itself. It can be rewritten if the matrix form as:

Aλ = h (3)

or in a detailed form as (4):
ϕ11 · · · ϕ1j · · · ϕ1N

...
. . .

...
. . .

...
ϕi1 · · · ϕij · · · ϕiN

...
. . .

...
. . .

...
ϕN1 · · · ϕNj · · · ϕNN




λ1
...
λi
...
λN

 =


h1
...
hi
...
hN


(4)

After solving the system of linear equations, interpolated
value at the point x is computed using (1). However, due
to numerical robustness and stability, additional polynomial

conditions are usually added Skala [23] [24]. In the case of
an additional polynomial we obtain:

h (xi) =
N∑
j=1

λjϕ (||xi − xj ||) + Pk(xi) (5)

In the case of a linear polynomial (in 2 1
2D case):

Pk (x, y) = a0 + a1x+ a2y (6)

This additional conditions can be rewritten as:
N∑
j=1

λj = 0
N∑
j=1

λjxj = 0 (7)



ϕ11 . . . ϕ1N 1 x1 y1
...

. . .
... 1

...
...

ϕN1 . . . ϕNN 1 xN yN
1 1 1 0 0 0
x1 . . . xN 0 0 0
y1 . . . yN 0 0 0





λ1
...
λ1
a0
a1
a2


=



λ1
...
λ1
0
0
0


(8)

This matrix can be further rewritten in more compact way:[
A P
PT 0

] [
λ
a

]
=

[
h
0

]
(9)

The matrix P represents polynomial additional conditions, λ is
vector of RBF weights, vector a contains resulting polynomial
coefficients and h are given values at the given points.

It should be noted that in some cases that it can be
counterproductive especially for large scope of domain data
Jäger [25], Skala [23] [24].

III. RBF APPROXIMATION

Approximation methods are slightly different from inter-
polation as the final approximated curve does not need to
”pass” all the given points. If the matrix A is a square matrix
(RBF count M is equal to size of the x vector), this is an
interpolation problem. On the other hand, when M is smaller,
it becomes approximation problem, because equation system
became over-determined. Let us ξj are significant points in the
given signal, then the approximation can be formulated as:

h (xi) =
M∑
j=1

λjϕ (||xi − ξj ||) (10)

where λj are weights of each radial basis function, M is
count of RBF being used and M � N , the ϕ is the RBF,
ξj are center (important) points. Then the approximation can
be expressed by equation (11):

ϕ11 · · · ϕ1M

...
. . .

...
ϕi1 · · · ϕiM

...
. . .

...
ϕN1 · · · ϕNM


 λ1

...
λM

 =


h1
...
hi
...
hN

 (11)
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Overdetermined linear equation system is to be solved, e.q. by
the Least Square Error method (12).

x =
(
ATA

)−1
ATh (12)

However, in the approximation case, the additional polynomial
conditions cannot be used Majdisova [26], [27].

IV. RBF FUNCTIONS

There are several radial basis functions Fasshauer [11],
Majdisova [28] [29], Buhmann [30]. They can be divided into
two major groups (Smolik [13]):
• ”global” RBFs having global influence, e.g. r2lg(r),
exp(−αr2), sqrt(α + r2) 1/sqrt(α + r2), 1/(α + r2),
etc. where α is a shape parameter. The RBF matrix is
usually full and ill conditioned.

• ”local” RBFs - Compactly Supported RBF (CS-RBF)
have a non-zero value for the interval 〈0, 1〉 only. The
RBF matrix is usually sparse as it depends on the scaling
of the interval 〈0, 1〉 to the required one. Some examples
are listed in Tab.I and they are shown on Fig.1. The article
Menandro [12] describes this class of RBFs.

Some examples of RBFs are listed in Tab.I and at Fig.1.

ID Function

1 (1− r)+

2 (1− r)3+ (3r + 1)

3 (1− r)5+
(
8r2 + 5r + 1

)
4 (1− r)2+

5 (1− r)4+ (4r + 1)

6 (1− r)6+
(
35r2 + 18r + 3

)
7 (1− r)8+

(
32r3 + 25r2 + 8r + 3

)
8 (1− r)3+

9 (1− r)3+ (5r + 1)

10 (1− r)7+
(
16r2 + 7r + 1

)
TABLE I: List of well-known CS-RBF.

V. PROPOSED RBF

In this paper a new global radial basis function is proposed.
It has one shape parameter and is defined as is in (13).

ϕ (r) = r2 (rα − 1) (13)

where α is a shape parameter (we use α = 1.8 globally). The
function is shown at Fig.2.

VI. DESCRIPTION OF EXPERIMENTS

For sake of simplicity, all signal values has been normalized
to interval h (xi) ∈ 〈0, 1〉, i. e. yi = h (xi). Signal domain has
been set to the xi ∈ 〈0, 1〉 as well for the same reason.

As already mentioned, four RBF has been used for testing
purposes. Gaussian RBF (in equation (14)) is global radial
basis function with one shape parameter α defining its disper-
sion.

ϕ (r) = e−αr
2

(14)

Fig. 1: Plotted CSRBFs taken from [13].
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Fig. 2: Proposed RBF function with various shape parameters.

Thin plate spline (TPS) function is the next one which has
been tested. It is global RBF as well, and it is defined in (15).

ϕ (r) = r2 log r (15)

Next class of function on the list is CS-RBF. In particular,
(16) function has been selected from the Tab.I. It is worth
noting that this function (like all CS-RBF) is local.

ϕ (r) = (1− r)7+
(
16r2 + 7r + 1

)
(16)

Last but not least we propose another RBF. It is global RBF
with a shape parameter α and it is described by equation (13).

Described radial basis functions approximation has been
tested against multiple signals, however, there are listed only
some of tested signals in this paper. This signal subset contains
following functions:
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Fig. 3: Function 1.
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Fig. 4: Function 2.

1) f1 (x) = 50
(
0.4sin

(
15x2

)
+ 5x

)
2) f2 (x) = atan

(
(10x− 5)

3
)
+ 0.5atan

(
(10x− 8)

3
)

3) f3 (x) = e10x−6sin
(
(5x− 2)

2
)
+ (3x− 1)3

4) f4 (x) = sin
(
15x2

)
+ 5x

Selected signals (sampled curves) are shown at Fig.3 – 6.
The RBF center points ξi are shown as various marks on

plotted signal curve on each plot. Four already mentioned
RBFs (Gauss, TPS, CS-RBF and the proposed one) were
selected to approximate these signals (among others).

VII. EXPERIMENTAL RESULTS

The proposed approach was tested on several testing func-
tions, see Tab.II. It should be noted explicitly, that all function
were normalized for the interval x ∈ 〈0, 1〉 , y ∈ 〈0, 1〉. In
order to easily compare errors of the proposed RBF approxi-
mation methods.

As the proposed RBF approximation is based on finding
significant geometric properties, such as maxima, minima, in-
flection points, etc., the conditionality of the RBF metrics and
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Fig. 5: Function 3.
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Fig. 6: Function 4.

mutual comparison of errors were analyzed. Error behaviour
is considered as the critical issue in approximation in general.

In this contribution only couple of function used are
presented, see Fig.3 – 6. The relevant approximation error
behaviour is presented at Fig.7 – 10.

Tab.III – V present the error behaviour numerically. Exact
numerical experimental results are presented in following
Tab.III (mean square error), Tab.IV (maximum absolute error)
and Tab.V (condition numbers of equation system matrix A
defined in equation 3) respectively. It can be seen that the
high error is caused by significant under-sampling. Inclusion
of additional point(s) leads to significant decrease of the
approximation error. It should be noted, that this contribution
is analyzing the approximation behaviour at the lowest border
of the sampling frequency.

The experiments proved that the sampled curves can be
efficiently approximated by the few ”important” points, i.e.
extrema, inflections etc., with acceptably low error. The pro-
posed method also leads to good data compression.
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1 sin
(
15x2

)
+ 5x

2 0.5 cos (20x) + 5x

3 50
(
0.4 sin

(
15x2

)
+ 5x

)
4 sin (8πx)

5 sin
(
6πx2

)
6 sin (25x+ 0.1)/ (25x+ 0.1)

7 2 sin (2πx) + sin (4πx)

8 2 sin (2πx) + sin (4πx) + sin (8πx)

9 −2 sin (2πx) + cos (6πx)

10 2 sin (2πx) + cos (6πx)

11 −2 sin (2πx) + cos (6πx)− x

12 −2 cos (2πx)− cos (4πx)

13 atan
(
(10x− 5)3

)
+ 0.5atan

(
(10x− 8)3

)
14 (4.48x− 1.88) sin

(
(4.88x− 1.88)2

)
+ 1

15 e10x−6) sin
(
(5x− 2)2

)
+ (3x− 1)3

16 (1/9) tanh (9x+ 0.5)

TABLE II: Tested artificial signals.
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Fig. 7: Differences for y = f1 (x).
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Fig. 10: Differences for y = f4 (x).

Experiments also proved that application of the CS-RBFs
with a constant shape parameter is not convenient, unless addi-
tional points are not included in the approximation. (maximum
error for the function 2, if CS-RBF is used).

The proposed RBF approximation method was also tested
for a newly developed RBF. The experiments proved signif-
icant precision improvement of the final approximation over
the TPS function.

Function Radial basis function

number CS-RBF TPS Gauss Proposed

1 2.41·10−4 6.40·10−6 3.13 ·10−7 1.21 ·10−7

2 1.54·10−1 3.95·10−6 2.56 ·10−2 2.34 ·10−6

3 9.21·10−4 8.67·10−6 2.51 ·10−4 3.30 ·10−7

4 7.92·10−4 2.56·10−5 3.12 ·10−7 5.23 ·10−7

TABLE III: Mean square error.

VIII. CONCLUSION

In this contribution a novel approach for RBF approximation
based on geometrical properties of a sampled curve (signal)
is presented. Experiments proved advantages of the global
functions over CS-RBFs are sensitive to the shape parameter
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Function Radial basis function

number CS-RBF TPS Gauss Proposed

1 7.33·10−2 7.76·10−3 1.70 ·10−3 9.21 ·10−4

2 1.81·100 5.24·10−3 5.19 ·10−1 6.29 ·10−3

3 1.44·10−1 1.39·10−2 5.09 ·10−2 2.30 ·10−3

4 1.33·10−1 1.52·10−2 1.76 ·10−3 1.89 ·10−3

TABLE IV: Maximum absolute error.

Function Radial basis function

number CS-RBF TPS Gauss Proposed

1 6.60·10−19 8.80·10−6 1.44 ·10−12 2.49 ·10−9

2 2.68·10−18 8.47·10−5 2.43 ·10−12 1.05 ·10−7

3 4.05·10−18 4.58·10−6 2.35 ·10−12 2.25 ·10−9

4 2.78·10−18 2.44·10−6 9.17 ·10−14 3.20 ·10−10

TABLE V: Condition numbers.

selection and require more points for acceptable approximation
in general.

The newly developed RBF function is better in the precision
terms over the TPS function, however, the TPS function has
a little bit worse conditionality which can be improved by
additional polynomial.

The proposed RBF seems to be an alternative to the TPS
function offering better error, however the influence of the
shape parameter α is under investigation. The optimal choice
of the shape parameter α is an open question.

The experiments also proved that the CS-RBFs require vari-
able shape parameter which is significant result as CS-RBFs
are used in many areas, e.g. solution of partial differential
equations, etc. The adaptive shape parameter for CS-RBFs is
to be explored in future.
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