
Muscle Deformation Using Position
Based Dynamics

Josef Kohout1(B) and Martin Červenka2

1 NTIS - New Technologies for the Information Society, Faculty of Applied Sciences,
University of West Bohemia, Univerzitńı 8, Plzeň, Czech Republic

besoft@ntis.zcu.cz
2 Department of Computer Science and Engineering, Faculty of Applied Sciences,

University of West Bohemia, Univerzitńı 8, Plzeň, Czech Republic
cervemar@kiv.zcu.cz

Abstract. This paper describes an approach to personalized muscu-
loskeletal modelling, in which the muscle represented by its triangu-
lar mesh is subject to deformation, based on a modified position-based
dynamic (PBD) method, followed by decomposition of its volume into a
set of muscle fibres. The PBD was enhanced by respecting some muscle-
specific features, mainly its anisotropy. The proposed method builds no
internal structures and works only with the muscle surface model. It runs
in real-time on commodity hardware while maintaining visual plausibil-
ity of the resulting deformation. For decomposition, the state-of-the-art
Kukačka method is used. Experiments with the gluteus maximus, gluteus
medius, iliacus and adductor brevis deforming during the simulation of
the hip flexion and decomposed into 100 fibres of 15 line segments show
that the approach is capable of achieving promising results comparable
with those in the literature, at least in the term of muscle fibre lengths.

Keywords: Position based dynamics · Musculoskeletal system ·
Muscle deformation · Muscle fibres · Personalised model

1 Introduction

For decades, musculoskeletal modelling has been an important topic of research
interest because of its ability to estimate internal loading on the human skeleton,
which cannot be measured in-vivo. These estimations are useful, e.g., for preop-
erative surgical planning and postoperative assessment in orthopaedic surgery,
rehabilitation procedures, prosthesis design, or prevention of injuries in profes-
sional sport.

Musculoskeletal models used in common practice (see, e.g., [1,2,6,8,11]) rep-
resent a muscle (or even a group of muscles) as one or more Hill-type one-
dimensional structures, commonly referred as lines of action or fibres, connecting

This work was supported by the Ministry of Education, Youth and Sports of the Czech
Republic, project SGS-2019-016 and project PUNTIS (LO1506).

c© Springer Nature Switzerland AG 2021
X. Ye et al. (Eds.): BIOSTEC 2020, CCIS 1400, pp. 486–509, 2021.
https://doi.org/10.1007/978-3-030-72379-8_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-72379-8_24&domain=pdf
http://orcid.org/0000-0002-3231-2573
http://orcid.org/0000-0001-9625-1872
https://doi.org/10.1007/978-3-030-72379-8_24

Muscle Deformation Using Position Based Dynamics 487

the origin and insertion points of the muscle, i.e., the sites at which the muscle
is attached to the bone by a tendon, and passing through a couple of predefined
via points, fixed to the underlying bone, or wrapping around predefined para-
metric objects (e.g. spheres, cylinders, or ellipsoids). Due to apparent difficulties
with the specification of the locations of insertion, origin, and via points, it is
common that there are no more than three fibres per muscle and they penetrate
the bones in some poses. Figure 1 shows an example of models of this kind. An
advantage of this approach, which makes it so popular, is its simplicity and rapid
processing speed.

Fig. 1. Musculoskeletal models used in common practice: left – Anybody (http://
www.anybodytech.com/) default model, middle – OpenSim (https://simtk.org/home/
opensim) gait2392 model, right – LHDL model [22].

As acquiring complete patient-specific or subject-specific data is nearly
impossible due to technological limitations of scanning devices, these muscu-
loskeletal models have anatomical parameters derived from cadaver experiments.
However, to answer specific subject-related questions, it is generally believed
that a patient-specific or subject-specific model is needed. The current practice
is, therefore, to take some of these generic models and adapt it to get a person-
alized model, which most typically consists of a non-uniform scaling (see, e.g.,
[38]) and a change of optimum fibre length.

Bolsterlee et al. [3] pointed out that many parameters in a model are inter-
related. Adapting the model to the subject by scaling improves the anatomical
resemblance between the model and the subject but may not improve force
prediction. Unfortunately, it is not known how to adapt the other parameters.
Several studies, e.g., [10,12,31], warn that attachment sites of muscles show
high inter-subject variability, which may considerably affect muscle moment-
arms because it has been shown that small differences in location of muscle
attachment points often affect muscle force predictions to a great extent (see
e.g., [4]).

http://www.anybodytech.com/
http://www.anybodytech.com/
https://simtk.org/home/opensim
https://simtk.org/home/opensim

488 J. Kohout and M. Červenka

Valente et al. [34] showed that representing a muscle, especially, a complex
one, e.g., the gluteus medius, by a single line segment can produce errors up to
75% suggesting thus that the number of fibres in musculoskeletal models being in
used might not be enough. Recently, Weinhandl & Bennett [37] confirmed that
high number of fibres are required for the muscle surrounding the hip joint to
provide an accurate estimation of joint contact forces. Modenese et al. [26] found
out that representing the muscles surrounding the hip joint by fibres with none
or a few via points only may limit the accuracy of hip contact force predictions.

To reduce the human effort associated with the construction of subject-
specific musculoskeletal models, some researchers proposed algorithms to gen-
erate the fibres automatically providing that the surface model of a muscle is
available [18,20,30]. The problem is how to update the shape of these fibres in
reaction to the movement of bones. One approach to this problem is to express
their vertices to be relative to the vertices of the surface mesh of the muscle,
first, and then use some of the existing algorithms for surface mesh deformation
proposed in the context of musculoskeletal modelling, e.g., [9,16,17,32].

In our conference paper [9], we proposed a new algorithm for muscle mesh
deformation, based on position-based dynamics [28], and demonstrated its fea-
tures on three hip muscles deforming during flexion of the right leg. In this paper,
which is an extended version of that paper, we newly include:

– a description of the implementation details of our algorithm such as its ini-
tialization for muscle deformation, constraints calculations,

– a proposal of alternative algorithms for detecting the muscle points that
should move with the bones,

– new experiments demonstrating the sensitivity of the results on its various
parameters (e.g., anisotropy, number of iterations, resolution of the mesh),

– new experiments showing the lengths of fibres generated in the volume of hip
muscles, and comparing them with those obtained by other approaches.

2 Position-Based Dynamics

Position-based dynamics (PBD), which is the core part of our approach, was
firstly introduced in [28] as a fast, stable, and controllable alternative to mass-
spring systems used in computer graphics algorithm. Since then, it has been
further developed (e.g., [25] proposed recently some speed and accuracy improve-
ments) and has found many (close to) real-time applications, not only in com-
puter graphics, e.g., for simulations of cloth or fluids [33], but even in other
domains. For example, Kotsalos et al. use PBD to model blood cells [24].

PBD represents a dynamic object, e.g., a muscle, by a set of N points, having
associated mass and velocity, and a set of M constraints restricting the free-
dom of the movement of these points during the simulation. In their paper [28],
Müller et al. presented the restraints to maintain distances among the points,
the shape of the object and its volume, and to avoid collisions with other objects,
however, one can use any constraint that is meaningful in their application con-
text. Mathematically speaking, assuming that every point has the same mass,

Muscle Deformation Using Position Based Dynamics 489

the PBD method solves Eq. 1 that describes a movement of a single point pi

restricted by a constraint function C with cardinality n, where Δpi denotes the
difference in position of ith point and �pi

C is the gradient of the function C
with respect to point pi.

Δpi = − �pi
C (p1, . . . ,pn)

∑n
j=1

∣
∣�pj

C (p1, . . . ,pn)
∣
∣2

· C (p1, . . . ,pn) (1)

2.1 Distance Constraint

Distance constraint is restricting each model point to change the distance from
the others in its neighbourhood. It is described by Eq. 2, where d is the original
distance between points p1 and p2.

C (p1,p2) = |p1 − p2| − d (2)

At this point, the gradient of this function has to be determined. Calculation
procedure of determining the gradient of the vector norm is shown in (3).

�p1C (p1,p2) = �p1 (|p1 − p2| − d)

=

[
∂(p1x−p2x)

2

∂p1x

∂(p1y−p2y)
2

∂p1y

∂(p1z−p2z)
2

∂p1z

]

2 |p1 − p2|
=

p1 − p2

|p1 − p2| = u

�p2C (p1,p2) =
p2 − p1

|p1 − p2| = −u

(3)

Coincidentally, the result is the unit directional vector u of given edge.

2.2 Volume Constraint

Volume constraint restricts the object to change its volume during the simulation
process. Assuming that this object is a triangular mesh model, the constraint
function is:

C (p1, . . . ,pn) =
m∑

i=1

(
pti1

·
(
pti2

× pti3

))
− V0 (4)

where m is the number of triangles forming the mesh, V0 is its original volume,
and ptij

is jth vertex of triangle i.
To obtain complete gradient of volume constraint function, all triangles are

treated independently and their results are just summed together:

�pi
C (p1, . . . ,pn) =

t∑

h=1

pj × pk; i �= j �= k (5)

490 J. Kohout and M. Červenka

2.3 Local Shape Constraint

Above described constraints are not enough to prevent the triangular mesh model
from becoming noisy, full of unrealistic spikes. One possible solution to this
problem is to use the distance constraint not only to keep the distances between
adjacent points but also between the pairs of points lying on the opposite sides
of the model. This would, however, need to create a 3D mesh model first, which
would be quite complex to do. Another option is to ensure that the local shape is
maintained. To achieve this, the dihedral angles between neighbouring triangles
should stay the same during deformation.

Equation 6 presents the local shape constraint function of triangles p1,p2,p3

and triangle p2,p1,p4 sharing points p1 and p2. In this equation, n1 and n2 are
normal vectors of these triangles and ϕ0 is the original dihedral angle between
them. Gradients are defined in (7).

C (p1,p2,p3,p4) = arccos (n1 · n2) − ϕ0

= arccos
(

(p2 − p1) × (p3 − p1)
|(p2 − p1) × (p3 − p1)|2

· (p2 − p1) × (p4 − p1)
|(p2 − p1) × (p4 − p1)|2

)

− ϕ0

(6)

d =n1 · n2

�p′
4
C = − 1√

1 − d2

(�p′
4
(n2) · n1

)

�p′
3
C = − 1√

1 − d2

(�p′
3
(n1) · n2

)

�p′
2
C = − 1√

1 − d2

(�p′
2
(n1) · n2 + �p′

2
(n2) · n1

)

�p′
1
C = −

4∑

i=2

�p′
i
C

(7)

3 Our Approach

The requested inputs of our approach are 1) a set of bones, each of which is rep-
resented by a triangular mesh and has an associated time-dependent transforma-
tion describing its movement, and 2) a muscle, also represented by a triangular
mesh. We note that the first input is standard when creating any subject-specific
musculoskeletal model. A muscle model is obtainable with a little effort from the
medical images by segmentation (similarly as models of bones). Optionally, the
user may specify a set of muscle fibres, represented by polylines, obtained, e.g.,
by Kohout & Kukačka [19], Kohout & Cholt [21], or Otake et al. [30] method.
Furthermore, the user may also specify a set of attachment areas that describes
the sites where the muscle attaches to the bones. As the muscle attachment sites

Muscle Deformation Using Position Based Dynamics 491

Fig. 2. Gluteus Maximus deformed by our approach: a) the input (origin and insertion
attachment sites denoted by red and blue spheres), b) bones move from their initial
rest-pose to the current pose (wireframe), c) the muscle surface adapted to the change
of bones by PBD, d) the output. (color figure online)

are not apparent from the medical images, these are traditionally identified man-
ually by an expert, typically as a set of landmarks fixed to the bones. Figure 2a
shows an example of a typical input.

At each vertex of the muscle mesh, we create one PBD point with the mass
being 1.0 and the initial velocity 0. For each pair of PBD points corresponding to
the vertices connected in the muscle mesh by an edge, we establish the distance
constraint (see Sect. 2.1) modified to support the anisotropic feature of muscles
– see Sect. 3.1. Similarly, we create the local shape constraint (see Sect. 2.3) and
the volume constraint (see Sect. 2.2). We note that we do not create any distance
constraint between points of opposite sides of the muscle to avoid an unnatural
change of the muscle shape during the simulation but rely solely on the latter
two restraints in that.

We distinguish between two classes of PBD points: fixed and moveable, auto-
matically detected as described in Sect. 3.3. A fixed point is bound to a single
bone and moves with it at the beginning of the PBD simulation. The movement
of the fixed points violates the equilibrium of the entire system, as described by
the constraints, and the PBD attempts to restore it by updating, iteratively, the
position of the moveable points while avoiding the penetration with the moved
bones using the mechanism for collision detection and response described in
Sect. 3.2 – see Fig. 2b,c.

Providing that the muscle fibres are specified, we compute the mean value
coordinates of every vertex of polylines representing the fibres in the domain
described by the triangular mesh of the muscle using the algorithm by Ju et al.
[15]. Mathematically speaking, this operation maps the position of a muscle fibre
vertex from E3 to En, where n is the number of vertices of the muscle mesh.
When the muscle surface deforms, the inverse mapping provides new positions
of fibre vertices within the deformed domain (see Fig. 2d):

492 J. Kohout and M. Červenka

v′
i =

n∑

j=1

wj · p′
j (8)

In the equation above, v′
i denotes the i-th fibre vertex, wj are its mean value

coordinates and p′
j is the position of the deformed muscle vertex pj .

The entire algorithm written in pseudocode is in Algorithm1 and 2.

3.1 Anisotropy

The PBD algorithm has been originally proposed in the computer graphics field
to model isotropic materials (e.g., cloths). However, muscles are anisotropic
(may behave differently in two distinct directions), so it is appropriate to take
anisotropy into account. The main idea is that muscle surface is stiffer in the
direction perpendicular to the muscle fibres and more flexible in the direction
parallel to these fibres. Mathematically speaking, we multiply the distance con-
straint (see Eq. 2) with the result of the following equation:

Algorithm 1. Pre-processing stage of our algorithm.
1: procedure Init(M, SB , SF , SA) � M is a muscle triangular mesh, SF is a

set of muscle fibres, SB is a set of bones,
and SA is a set of attachment areas

2: for all vertices vi ∈ SF do
3: wi = computeMV C(vi, M) � compute the mean value coordinates
4: end for

5: for all bones B ∈ SB do
6: generateCollisionDataStructure(B) � see Section 3.2
7: end for

8: for all vertices pi ∈ M do
9: xi = pi, vi = 0, mi = 1 � initialize a PBD point

10: end for

11: detect fixed points � see Section 3.3

12: for all edges ei ∈ M do
13: generateDistanceConstraint(ei) � compute the original distance d
14: if SF = ∅ then
15: ki = 1 � no anisotropy used
16: else
17: ki = computeAnisotropyStiffness(ei) � see Section 3.1
18: end if
19: generateLocalShapeConstraint(ei) � compute the dihedral angle ϕ0

20: end for

21: generateV olumeConstraint(M) � compute the original volume V0

22: end procedure

Muscle Deformation Using Position Based Dynamics 493

Algorithm 2. Runtime stage of our algorithm.
1: procedure Execute(simFrame) � simFrame is the index of simulation frame
2: for all bones B ∈ SB do � see also Algorithm 1
3: T = getTransform(B, simFrame) � get the transformation matrix
4: transformMesh(B, T)
5: end for

6: for all PBD points i do
7: if isFixed(i) then
8: B = getAttachmentBoneForPoint(i)
9: pi = transformPoint(xi, getTransform(B, simFrame))

10: else
11: vi = vi+ Δt · fext (xi) /mi � update velocities by external forces
12: vi = vi · cdamp � apply some damping
13: pi = xi + Δt · vi

14: end if
15: end for

16: loop solverIterations times
17: for all edges ei ∈ M do
18: projectDistanceConstraintWithAnisotropy(ei, ki) � updates pi

19: end for
20: projectV olumeConstraint()
21: for all edges ei ∈ M do
22: projectLocalShapeConstraint(ei)
23: end for
24: for all vertices i do
25: for all bones B ∈ SB do
26: T = getTransform(B, simFrame)

27: generateCollisionConstraints(B, T−1,xi,pi)
28: end for
29: projectCollisionConstraints()
30: end for
31: end loop

32: for all verticies i do
33: if NotIsF ixed(i) then

34: vi = pi−xi

Δt � compute the velocity
35: xi = pi � update the position
36: end if
37: end for

38: for all vertices pi ∈ M do
39: pi = xi � update the muscle mesh
40: end for
41: for all vertices vi ∈ SF do
42: vi = reconstructPositionFromMV C(wi, M)
43: end for
44: end procedure

494 J. Kohout and M. Červenka

ki = 1 − ui · vi (9)

The direction of ith edge is described by normalized vector ui, vi denotes
tangential direction normal vector of nearest fibre on the surface. If both vectors
are collinear, the result ki will be zero, meaning no distance is preserved. If these
two vectors are perpendicular, then k1 is equal to one and edge length will be
preserved.

3.2 Collision Handling

The moving muscle and bones should not intersect each other. From several
approaches to this issue we considered (see our conference paper [9]), we have
opted for voxelization because of its simplicity and processing speed. In this
approach, the bounding box of a bone is divided into a uniform grid of nx ×ny ×
nz equally sized cells. For each triangle in the bone mesh, we detect the cells
intersected by it and mark them as the boundary. Assuming that the mesh is
closed, we mark the cells that are inside the bone using the flood-fill algorithm
with 8-directions. All other cells are outside. Figure 3 shows the visualization of
boundary cells when the constants nx, ny, and nz are equal and when they are
automatically determined from the sizes of the bounding box so that the overall
number of cells is roughly equal to some given constant nmax.

Fig. 3. Voxel representation of pelvis and femur. From left to right: nx = ny = nz = 64
(262 144 cells, 256 KB min), nmax = 262 144 – pelvis = 47 × 64 × 85 (255 680 cells,
250 KB min) femur = 42× 176× 34 (251 328 cells, 245 KB min), nmax = 8 · 262 144 =
2 097 152 – pelvis = 95×128×171 (2 079 360 cells, ≈2 MB min) femur = 85×352×69
(2 064 480 cells, ≈2 MB min).

During the simulation, the algorithm identifies the cell in which a PBD point
pi lies. If this cell is outside the bone, the point does not collide with the bone.
Otherwise, its position needs to be updated. Two scenarios have to be distin-
guished. In the first one, the muscle moves (e.g. because of surrounding forces)
and hits a bone. As it is, the previous position of this point (xi) is outside the
bone. The algorithm, therefore, traverses the collision data structure along the

Muscle Deformation Using Position Based Dynamics 495

line segment from pi to xi until it does not find an outside cell. If this cell is
the cell of xi, pi moves back to xi; otherwise, it moves to the point on the line
segment where the traversal stopped.

In the second scenario, a bone moves into the muscle. Therefore, even the
previous position of the point (xi) no longer lies outside the bone. We propose
a solution where pi moves to xi transformed by the same transformation that
caused the collision.

3.3 Detecting the Fixed Points

Assuming that the muscle is, in fact, a musculotendon unit, i.e., its surface
touches the bones at the attachment sites, there are three approaches to detecting
the muscle points that should be fixed to some bone and move with it, each of
which has its pros and cons. In our previous work [9], we used the constructed
data structure for collision detection also for the identification of the fixed points.
However, recent analysis shows that this algorithm may inappropriately fix also
the points that are close to some bone but should slide along it – see Fig. 4. That
is the real reason for the unacceptable behaviour of the iliacus muscle during the
flexion of the right leg reported in the original paper.

We, therefore, have experimented with another approach. We fix all points
lying in the proximity of some bone, i.e., having their distances to the surface
of a bone smaller or equal to a predefined threshold. An obvious choice is to
compute the average length of edges in the muscle mesh and use it as this
threshold. Figure 5, however, shows that the results are not very different from
the results obtained by the original algorithm. Specification of the threshold
value by the user may help. Nevertheless, this is very sensitive. For example,

Fig. 4. Muscle vertices (red cubes) of Iliacus fixed to some bone, i.e., preserving their
relative position to the bone during the simulation, as identified by the original CD-
based algorithm (nx = ny = nz = 64) causing an unsatisfactory result of the deforma-
tion (right). (Color figure online)

496 J. Kohout and M. Červenka

while 1 mm threshold seems perfect for gluteus maximus, for iliacus, a value less
than 0.5 mm is needed to get something at least reasonable.

The third approach exploits the idea that muscle attachment areas are typi-
cally required for the construction of muscle fibres and, the user, therefore, have
them readily available also for detection of the fixed points. We assume that an
attachment area is defined by a set of landmarks that are fixed to a bone and,
furthermore, they are specified in an order such that interconnecting every pair
of adjacent landmarks by a line segment would produce a closed non-intersecting
poly-line corresponding to the boundary of the attachment area. Following the
idea described by Kohout & Kukačka in [19], we detect the patch on the mus-
cle having the boundary corresponding to the boundary of the attachment area
projected onto the muscle surface and fix all the points of this patch. As Fig. 5
demonstrates, this approach provides us with the best results.

4 Experimental Results

In this paper, a subset of a comprehensive female cadaver anatomical dataset
(81 y/o, 167 cm, 63kg) is used. Specifically, pelvic and femur bones together with
several muscles from the pelvic region have been selected.

Fig. 5. Muscle vertices (red cubes) of gluteus maximus (top) and iliacus (bottom) fixed
to some bone, i.e., preserving their relative position to the bone during the simulation,
as identified by the original CD-based algorithm (nx = ny = nz = 64), the muscle-bone
proximity algorithm with the thresholds: average edge length, 0.5 mm, and 1 mm, and
by the algorithm using muscle attachment areas input data. (Color figure online)

Muscle Deformation Using Position Based Dynamics 497

Fig. 6. Gluteus maximus (19 752 triangles (�)), gluteus medius (10 622 �), iliacus
(13 858 �), and adductor brevis (17 124 �) decomposed into a set of 100 fibres
composed of 15 line segments.

The complete data are publicly available in LHDL dataset [36] and has been
selected because it includes high-quality surface meshes of bones and muscles.
Furthermore, the dataset was improved by removing non-manifold edges, dupli-
cated vertices and degenerate triangles followed by surface smoothing in both
muscle and bone models using MeshLab [5]. The dataset also contains mus-
cle attachment areas and geometrical paths of superficial fibres obtained from
dissection [35].

To decompose the muscles into fibres, we use the Kohout & Kukačka method
[19] with a slight modification: establishing the inter-contour correspondence
is done by minimizing the sum of square distances between the corresponding
points. This modification increases the robustness of the method even in cases
when the user-specified number of straight-line segments per fibre is low.

We decomposed the surface meshes of gluteus maximus, gluteus medius, ilia-
cus and adductor brevis into models of 100 fibres using a template with parallel
fibres composed of 15 line segments – see Fig. 6. The decomposition took less
than 50 ms in all cases on HP EliteDesk 800 G3 TWR (Intel Core i7-7700K @
4.2 GHz, 64 GB RAM, Windows 10 64-bit).

Simulations of hip flexion (0◦ to 90◦) were performed in steps of 2◦ via
inverse kinematics. Inverse kinematics means that the location and movement
of all bones are known, and muscle actual shape has to be determined according
to these situations. We note this is exactly the opposite to what can be seen in
real situation, where muscles control bone movement.

498 J. Kohout and M. Červenka

The default parameters in all our experiments were: nmax = 8 ·64 ·64 ·64, the
damping constant cdamp = 0.99, anisotropy on, local shape constraint stiffness =
0.9 (i.e., the solver was allowed to violate this constraint to preserve the volume
and avoid the penetration between the muscle and bones).

4.1 Number of Solver Iterations

In the first experiment, we investigated the influence of the number of iterations
of constraint projections (see the loop on line 16 in Algorithm2) on the quality of
the results and overall time required for the simulation. From Fig. 7, it is apparent
that the average displacement of points between individual iterations quickly
decreases. In a few iterations, it drops below 0.1 mm; with just 10 iterations it
is below 0.01 mm.

Average time required by one simulation step (Algorithm 2) on HP EliteDesk
800 G3 TWR (Intel Core i7-7700K @ 4.2 GHz, 64 GB RAM, Windows 10 64-bit)
using our, mostly unoptimized, C++ implementation is in Table 1.

Table 1. Times needed for one simulation step on average for adductor brevis using
various number of PBD solver iterations (NoIters).

NoIters 1 3 5 10 25 50 100

Time [ms] 53.04 62.55 74.66 104.96 193.66 441.72 658.71

0.0001

0.001

0.01

0.1

1

0 100 200 300 400 500 600 700 800 900 1000

Av
er

ag
e

di
sp

la
ce

m
en

t [
m

m
]

Number of PBD solver itera�ons

Fig. 7. The average displacement of points of adductor brevis between individual itera-
tions of the PBD solver during the hip flexion. Note the logarithmic scale on the y-axis.

Muscle Deformation Using Position Based Dynamics 499

Figure 8 brings a visual comparison of the results obtained using a various
number of iterations. An unrealistic bending of the muscle is apparent, especially
when using a few iterations only. This behaviour has three reasons. First, the
speed of the femur bone is quite high; it is 2◦ per simulation step, which repre-
sents the movement of the fixed points of 3.78–6.75 mm. Next, at the beginning
of the simulation, the moving femur hits an unfixed part of the muscle giving
it a large velocity pulling it in the direction opposite to the natural movement.
Finally, the muscle mesh contains 17126 triangles, i.e., it is pretty accurate, and,
therefore, a lot of iterations are required to propagate the movement from the
points on the femur to those on the pelvis.

Hence, we reduced the number of triangles using the quadric edge collapse
decimation implemented in MeshLab software down to 3000 (L1) and 1000
(L2). Not only visual realism improves, as Fig. 9 illustrates, but also the overall
required time decreases since there are less PBD points and consequently also
fewer constraints to satisfy. For L2 mesh, 1000 iterations need 349.80 ms per
simulation step on average, which is even faster than 100 iterations for the orig-
inal, high-resolution mesh. Naturally, this higher number of iterations improves
visual appearance considerably. We note, however, that increasing the number
of iterations further, e.g., to 10000, does not bring any substantial change.

4.2 Fixed Points

Figure 8 also demonstrates the effect of the algorithm used to detect the points
to fix on the results of the deformation. Due to inaccuracies during the extraction
of the musculotendon unit, only a very small part of the adductor brevis muscle
is touching the femur. When using the original algorithm, which exploits the
collision detection mechanism, a significant area on the muscle is, therefore, not
fixed. As a result, the deformation algorithm produces the mesh with an unreal-
istic sharp spike. There is no such issue with the detection algorithm exploiting
the knowledge of muscle attachment areas.

A different case happens with the iliacus muscle – see Fig. 10. Despite the
relatively high resolution of the voxel data structure, many muscle points in
proximity of the femur ball are fixed incorrectly to the femur. As a result, this
part of the muscle moves unrealistically into the narrow space between the femur
and pelvis. Using the attachment areas improves the situation but only slightly
because the points in the proximity of the femur ball typically collide with the
coarse voxel representation of the femur and they are, therefore, transformed
using the same transformation. After turning this collision handling mechanism
off, the algorithm provides us with acceptable results with a small muscle-bone
penetration.

500 J. Kohout and M. Červenka

Fig. 8. Adductor brevis at flexion of 40◦ using 1, 3, 5, 10 or 100 PBD solver iterations
(from left to right) with anisotropy off (odd rows) and on (even rows) when fixing the
points by the original CD-based algorithm with nmax = 8 · 262 144 (the first two rows)
and by the algorithm using muscle attachment areas (the last two rows).

4.3 Anisotropy, Volume and Other Constraints

The impact of the anisotropy on the results is apparent in Fig. 8. Surprisingly, it is
barely observable. Most probably, this is because the other constraints (especially
the volume constraint) play a dominant role. Volume preservation constraint was
tested by determining ratio between both original and actual volumes. Figure 11
show us the volume preservation results. As we can see, the volume is well
preserved (the error is less than 1% in all cases). Other quantitative tests, e.g.,
preservation of the dihedral angles between two adjacent triangles and average
edge extension, are presented in our original conference paper [9].

4.4 Muscle Fibre Lengths

Last but not least, we analyzed the lengths of fibres reconstructed at the end of
the deformation step. To remove any noise that might be present in the data, we
performed a smoothing process, repeated five times, that updates the length li
according to the equation: l′i = (li−1 + 4 · li + li+1)/6. The results are present in
Figs. 12, 13, and 14. Both gluteus maximus and gluteus medius behave during the
hip flexion as expected. The lengths of all the gluteus maximus fibres increase.
In the case of the gluteus medius, only the surface fibres extend, while the deep

Muscle Deformation Using Position Based Dynamics 501

Fig. 9. Adductor brevis at flexion of 40◦ using 100 PBD solver iterations, anisotropy
on, fixing the points at muscle attachment areas when a surface mesh with 17 124,
3 000, and 1 000 triangles is used.

Fig. 10. Iliacus at flexion of 40◦ using 5 PBD solver iterations, anisotropy on, fixing
the points by the original CD-based algorithm with nmax = 8 ·262 144 (left) and by the
algorithm using muscle attachment areas with (middle) and without (right) collision
handling when a bone hits the muscle.

0 20 40 60 80 100
0.99

0.995

1

1.005

1.01

1.015

1.02

Angle [deg]

Vo
lu

m
e

ra
tio

Gluteus maximus

Gluteus medius

Adductor Brevis

Iliacus

Fig. 11. Volume preservation during hip flexion using 3 PBD solver iterations.

502 J. Kohout and M. Červenka

0 20 40 60 80
hip flexion [deg]

0.15

0.2

0.25

0.3

0.35

0.4
fib

re
 le

ng
th

s
[m

]

Fig. 12. Total length of each individual fibre during simulation in the gluteus maximus
muscle. The visual results at 20◦, 50◦, and 70◦ are shown for illustration.

fibres contract. For the iliacus muscle, we can observe an unrealistic increase in
the lengths when the flexion is greater than 70◦, which is caused by the above-
described issue of pushing a part of the muscle into the joint space.

4.5 Deformation Speed

The proposed method was designed to be not only precise, but mainly, fast.
It was implemented in C++ using VTK toolkit. Its current version is publicly
available at https://github.com/cervenkam/muscle-deformation-PBD.

Using the collision detection structure with nx = ny = nz = 64 and three
PBD solver iterations, we measured the processing speed of our implementation.
All tests were performed on Intel R© CoreTM i7-4930K 3.40 GHz CPU, Radeon
HD 8740 GPU and WDC WD40EURX-64WRWY0 4TB HDD. The results, given
in FPS (Frames Per Second), i.e., the number of simulation steps per second,
are listed in Table 2. As it can be seen, the FPS strictly depends on number of
triangles (Spearman’s ρ = −1). The more triangles is used, the slower the method

https://github.com/cervenkam/muscle-deformation-PBD

Muscle Deformation Using Position Based Dynamics 503

0 20 40 60 80
hip flexion [deg]

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

fib
re

 le
ng

th
s

[m
]

Fig. 13. Total length of each individual fibre during simulation in the gluteus medius
muscle. The visual results at 20◦, 50◦, and 70◦ are shown for illustration.

Table 2. FPS of each simulation.

Deforming object Triangle count FPS

Gluteus maximus 19752 33.85

Abductor brevis 17124 35.89

Iliacus 13858 47.21

Gluteus medius 10622 57.12

is. Even though the program is mostly unoptimized and runs sequentially at the
moment, the FPS is sufficient for considered purposes in general.

5 Discussion

In the past, several algorithms for the deformation of the surface mesh of a
muscle were proposed. Most of these algorithms, however, have unreal require-
ments on the input, e.g., [16,17] rely on existence of a muscle skeleton (centroid)

504 J. Kohout and M. Červenka

0 20 40 60 80
hip flexion [deg]

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

fib
re

s
le

ng
th

 [m
m

]

Fig. 14. Total length of each individual fibre during simulation in the iliacus muscle.
The visual result at 20◦, 50◦, and 70◦ are shown for illustration. For clarity, we do not
show the fibres. Readers are referred to Fig. 10 to see the produced fibres of the iliacus
muscle.

having known a physiologically correct deformation, or they ignore important
physiological properties such as impenetrability with bones and other muscles
(e.g., [17,32]), muscle volume preservation, and anisotropy of muscles during
their contraction.

Romeo et al. [32] independently to our work developed an approach similar
to ours. The main differences are as follows. First, the authors build a complex
internal muscle structure to better preserve the shape and volume of the mus-
cle, while we work with the surface geometry only. Next, they do not include
any mechanism to prevent penetration of muscles and bones, relying thus on
manually defined various mesh-to-mesh constraints, which not only complicates
the setup but also does not guarantee impenetrability. We implemented a simple
and fast collision handling that avoids muscle-bone penetration in most cases.
Finally, their aim is to have a visually plausible skin deformation but what is
going on inside the body is not of their interest. We, on the other hand, focus
on the representation of muscles for mechanical assessments.

Muscle Deformation Using Position Based Dynamics 505

Janak et al. [14] proposed a technique based on the mass-spring system to
deform the fibres while preventing their penetration with bones and fibres of
other muscles. To get reasonable results, a lot of particles are required, which
causes high time and memory complexity. More importantly, the muscle volume
is not preserved. This could be probably solved using the approach described in
[13], however, it would increase computational time dramatically. Finally, our
experiments show that although this method retains the smooth shape of iliacus
muscle during flexion, it twists the part of the muscle close to the insertion. This
is because, unlike our approach, the particles are in the entire volume of the
muscle, which results in a model that is much more rigid, and as anisotropy is
not exploited, rigid in all directions. Our method supports anisotropy, preserves
the volume and runs in a fraction of time while requiring no extra parameter or
input in comparison with this method.

The most complex way to solve muscle dynamics is by using the finite element
method (FEM). This approach is physically the most accurate one if the muscle
is well discretized (see e.g., [7]). However, computational complexity is high,
meaning the FEM-based methods are unsatisfactorily slow. Therefore, it is quite
impractical for real-time application or even clinical assessments. Next issue is
a difficult set up of FEM methods, making them unsuitable for personalised
musculoskeletal method deformation. Despite these facts, these methods can be
seen in the movie industry, see e.g. Ziva VFX1 plugin for Maya, and in muscle
physiology research, see e.g. [29] or [23]. In comparison with these methods, our
method is quite simple to set up and runs fast providing the promising results
in most cases.

Recently, Modenese & Kohout [27] presented a simple method that calcu-
lates the kinematic position of a vertex of the fibre as a linear combination of
the transformations of its rest-pose position with respect to the bones with the
attachment sites of the muscle this fibre belongs to, whereas the blending weight
is chosen as a function of the relative distance of this vertex from the origin
point of the fibre with one user-specific parameter to minimize the penetration
of the fibre with bones. Using the approach described in [18] to highly discretize
the muscles of pelvic region (up to 100 fibres of 15 line segments), the fibres’
moment arms of hip flexion, adduction, and internal rotation were validated
against measurements and models of the same muscles from the literature with
promising outcomes. Nevertheless, extending the method for muscles wrapping
around multiple bones, such as rectus femoris, is not straightforward. Further-
more, a muscle-bone penetration cannot be avoided and in the case of the iliacus
muscle, the fibres are also unrealistically pushed into the hip joint. Similarly to
[14], the volume of a muscle cannot be preserved.

We compared the length of the fibres produced by Modenese & Kohout [27]
with those produced by our approach using the same data. Figure 15 shows a
good match between the results for the gluteus medius and the iliacus. A signifi-
cant difference is apparent for the gluteus maximus. The range of lengths of our
fibres is much bigger than theirs, whereas our fibres tend to be longer. One of

1 https://zivadynamics.com/.

https://zivadynamics.com/

506 J. Kohout and M. Červenka

0 20 40 60 80
hip flexion [deg]

0.15

0.2

0.25

0.3

0.35

0.4
fib

re
 le

ng
th

s
[m

]

0 50 100

0.1

0.15

0.2

0.25

0 20 40 60 80
hip flexion [deg]

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

fib
re

s
le

ng
th

 [m
m

]

Fig. 15. Comparison of the lengths of the fibres of the gluteus maximus (left), gluteus
medius (middle), and iliacus (right) muscle produced by our approach (red) and by
the approach described in [27] (blue). (Color figure online)

the reasons for this difference is that our approach guarantees impenetrability
between muscle and bones. As a result, all the fibres have to wrap around the
joint and, naturally, they must be longer than the fibres produced by the other
approach, where some fibres penetrate the femur in extreme positions. The vol-
ume preservation constraint prevents the flattening of the muscle at the greater
trochanter of the femur, which means that the surface fibres are more distant
from the bone than in the other approach. Consequently, they are longer.

There are some limitations of the proposed approach. First of all, the exper-
iments have shown that detecting the muscle points that should move with
bones exploiting the information about attachment areas of the muscle is supe-
rior in most cases when compared with proximity or collision-based detection.
The muscle attachment sites, however, cannot be extracted automatically from
the medical images and their manual specification, by an expert in anatomy,
is time-consuming. Nevertheless, Fukuda et al. [10] proposed an approach to
the automatic estimation of the muscle attachments that is based on apply-
ing a non-rigid transformation of the surface model of a normalized (average)
bone with a normalized attachment site specified onto the surface model of the
subject-specific bone. When the normalized attachment site is obtained from a
probabilistic atlas built as suggested by the authors, the estimations are quite
accurate, with dice coefficients reaching up to 70%.

Next, the proposed collision handling is inaccurate, which leads to an appear-
ance of sharp spikes on the surface of the muscle, especially, when using a coarse
voxel representation of bones. Naturally, as the memory complexity of this repre-
sentation grows cubically, it is obvious that using a refined voxel representation
is impractical. In the scenario when a bone moves into a muscle, setting the
velocities of the colliding points to zero instead of using the formula on line 34
(in Algorithm 2) could help.

Finally, the results are very sensitive to the settings of the parameters. Fortu-
nately, as the simulation runs in real-time, even using an unoptimized sequential

Muscle Deformation Using Position Based Dynamics 507

implementation, the user may tune the values of these parameters until they are
satisfied with the visual output of our approach.

6 Conclusion and Future Work

The presented approach is capable of performing a visually plausible and physi-
cally correct real-time deformation of muscles represented by triangular meshes
in most cases we tested. The main issue is with the iliacus muscle, which (when
deformed) looks unrealistic. Nevertheless, the qualitative and quantitative results
(e.g., the length of the fibres produced in the volume of the deformed muscle)
are comparable with the other state-of-the-art methods. In the future, the ilia-
cus muscle deformation will be further analyzed and the issue with muscle tissue
entering the joint is to be solved.

The implementation is written in C++ and partially included in OpenSim
(a state-of-the-art simulation software) as a plugin. Its source code is available
at https://github.com/cervenkam/muscle-deformation-PBD.

Acknowledgment. Authors would like to thank their colleagues and students for
valuable discussion, worthful suggestions and constructive comments. Authors would
like to thank also anonymous reviewers for their hints and notes provided.

References

1. Arnold, E.M., Ward, S.R., Lieber, R.L., Delp, S.L.: A model of the lower
limb for analysis of human movement. Ann. Biomed. Eng. 38(2), 269–
279 (2009). https://doi.org/10.1007/s10439-009-9852-5. http://www.ncbi.nlm.nih.
gov/pmc/articles/PMC2903973/

2. Audenaert, A., Audenaert, E.: Global optimization method for combined spherical-
cylindrical wrapping in musculoskeletal upper limb modelling. Comput. Methods
Programs Biomed. 92(1), 8–19 (2008). https://doi.org/10.1016/j.cmpb.2008.05.
005. http://www.ncbi.nlm.nih.gov/pubmed/18606476

3. Bolsterlee, B., Veeger, D.H.E.J., Chadwick, E.K.: Clinical applications of muscu-
loskeletal modelling for the shoulder and upper limb. Med. Biol. Eng. Comput.
51(9), 953–963 (2013). https://doi.org/10.1007/s11517-013-1099-5

4. Carbone, V., van der Krogt, M., Koopman, H., Verdonschot, N.: Sensitivity of
subject-specific models to errors in musculo-skeletal geometry. J. Biomech. 45(14),
2476–2480 (2012). https://doi.org/10.1016/j.jbiomech.2012.06.026

5. Cignoni, P., Callieri, M., Corsini, M., Dellepiane, M., Ganovelli, F.,
Ranzuglia, G.: MeshLab: an open-source mesh processing tool. Comput-
ing 1, 129–136 (2008). https://doi.org/10.2312/LocalChapterEvents/ItalChap/
ItalianChapConf2008/129-136

6. Delp, S.L., Loan, J.P., Hoy, M.G., Zajac, F.E., Topp, E.L., Rosen, J.M.: An inter-
active graphics-based model of the lower extremity to study orthopaedic surgical
procedures. IEEE Trans. Biomed. Eng. 37(8), 757–767 (1990). https://doi.org/10.
1109/10.102791

7. Delp, S.: Three-dimensional representation of complex muscle architectures and
geometries 1. Ann. Biomed. Eng. 33, 1134 (2005). https://doi.org/10.1007/s10439-
005-1433-7

https://github.com/cervenkam/muscle-deformation-PBD
https://doi.org/10.1007/s10439-009-9852-5
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903973/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2903973/
https://doi.org/10.1016/j.cmpb.2008.05.005
https://doi.org/10.1016/j.cmpb.2008.05.005
http://www.ncbi.nlm.nih.gov/pubmed/18606476
https://doi.org/10.1007/s11517-013-1099-5
https://doi.org/10.1016/j.jbiomech.2012.06.026
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.2312/LocalChapterEvents/ItalChap/ItalianChapConf2008/129-136
https://doi.org/10.1109/10.102791
https://doi.org/10.1109/10.102791
https://doi.org/10.1007/s10439-005-1433-7
https://doi.org/10.1007/s10439-005-1433-7

508 J. Kohout and M. Červenka

8. Delp, S.L., Loan, J.P.: A computational framework for simulating and analyzing
human and animal movement. Comput. Sci. Eng. 2(5), 46–55 (2000)

9. Červenka, M., Kohout, J.: Fast and realistic approach to virtual muscle deforma-
tion. In: Proceedings of the 13th International Joint Conference on Biomedical
Engineering Systems and Technologies. SCITEPRESS - Science and Technology
Publications (2020). https://doi.org/10.5220/0009129302170227

10. Fukuda, N., et al.: Estimation of attachment regions of hip muscles in CT image
using muscle attachment probabilistic atlas constructed from measurements in
eight cadavers. Int. J. Comput. Assist. Radiol. Surg. 12(5), 733–742 (2017).
https://doi.org/10.1007/s11548-016-1519-8

11. Garner, B., Pandy, M.: The obstacle-set method for representing muscle paths
in musculoskeletal models. Comput. Methods Biomech. Biomed. Eng. 3(1), 1–30
(2000)

12. Herteleer, M., et al.: Variation of the clavicle’s muscle insertion footprints - a
cadaveric study. Sci. Rep. 9(1), 1–8 (2019). https://doi.org/10.1038/s41598-019-
52845-8

13. Hong, M., Jung, S., Choi, M.H., Welch, S.: Fast volume preservation for a mass-
spring system. IEEE Comput. Graph. Appl. 26, 83–91 (2006). https://doi.org/10.
1109/MCG.2006.104

14. Janák, T., Kohout, J.: Deformable muscle models for motion simulation. In: Pro-
ceedings of the 9th International Conference on Computer Graphics Theory and
Applications. pp. 301–311. SCITEPRESS - Science and and Technology Publica-
tions (2014). https://doi.org/10.5220/0004678903010311

15. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed
triangular meshes. ACM Trans. Graph. 24(3), 561–566 (2005).
http://portal.acm.org/citation.cfm?doid=1073204.1073229

16. Kellnhofer, P., Kohout, J.: Time-convenient deformation of musculoskeletal system.
In: ALGORITMY 2012, 19th Conference on Scientific Computing, Vysoke Tatry,
Slovakia, 09–14 Sep 2012, pp. 239–249. Slovak Univ Technology, Bratislava (2012)

17. Kohout, J., et al.: Patient-specific fibre-based models of muscle wrapping. Interface
Focus 3(2), 20120062 (2013). https://doi.org/10.1098/rsfs.2012.0062

18. Kohout, J., Kukačka, M.: Real-time modelling of fibrous muscle. Comput. Graph.
Forum 33(8), 1–15 (2014). https://doi.org/10.1111/cgf.12354

19. Kohout, J., Kukačka, M.: Real-time modelling of fibrous muscle. In: Computer
Graphics Forum [18], pp. 1–15. https://doi.org/10.1111/cgf.12354

20. Kohout, J., Cholt, D.: Automatic reconstruction of the muscle architecture from
the superficial layer fibres data. Comput. Methods Programs Biomed. 150, 85–95
(2017). https://doi.org/10.1016/j.cmpb.2017.08.002

21. Kohout, J., Cholt, D.: Automatic reconstruction of the muscle architecture
from the superficial layer fibres data. In: Computer Methods and Programs in
Biomedicine [20], pp. 85–95. https://doi.org/10.1016/j.cmpb.2017.08.002

22. Kohout, J., Clapworthy, G.J., Martelli, S., Viceconti, M.: Fast realistic modelling
of muscle fibres. In: Csurka, G., Kraus, M., Laramee, R.S., Richard, P., Braz, J.
(eds.) VISIGRAPP 2012. CCIS, vol. 359, pp. 33–47. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38241-3 3

23. Kojic, M., Mijailovic, S., Zdravkovic, N.: Modelling of muscle behaviour by the
finite element method using Hill’s three-element model. Int. J. Numer. Meth. Eng.
43(5), 941–953 (1998). https://doi.org/10.1002/(SICI)1097-0207(19981115)43:
5〈941::AID-NME435〉3.0.CO;2-3

https://doi.org/10.5220/0009129302170227
https://doi.org/10.1007/s11548-016-1519-8
https://doi.org/10.1038/s41598-019-52845-8
https://doi.org/10.1038/s41598-019-52845-8
https://doi.org/10.1109/MCG.2006.104
https://doi.org/10.1109/MCG.2006.104
https://doi.org/10.5220/0004678903010311
http://portal.acm.org/citation.cfm?doid=1073204.1073229
https://doi.org/10.1098/rsfs.2012.0062
https://doi.org/10.1111/cgf.12354
https://doi.org/10.1111/cgf.12354
https://doi.org/10.1016/j.cmpb.2017.08.002
https://doi.org/10.1016/j.cmpb.2017.08.002
https://doi.org/10.1007/978-3-642-38241-3_3
https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3
https://doi.org/10.1002/(SICI)1097-0207(19981115)43:5<941::AID-NME435>3.0.CO;2-3

Muscle Deformation Using Position Based Dynamics 509

24. Kotsalos, C., Latt, J., Chopard, B.: Bridging the computational gap between meso-
scopic and continuum modeling of red blood cells for fully resolved blood flow.
J. Comput. Phys. 398, 108905 (2019). https://doi.org/10.1016/j.jcp.2019.108905.
cited By 0

25. Macklin, M., et al.: Small steps in physics simulation. In: Proceedings of the 18th
Annual ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA 2019, pp. 2:1–2:7. ACM, New York (2019). https://doi.org/10.1145/3309486.
3340247

26. Modenese, L., Gopalakrishnan, A., Phillips, A.: Application of a falsification strat-
egy to a musculoskeletal model of the lower limb and accuracy of the predicted
hip contact force vector. J. Biomech. 46(6), 1193–1200 (2013). https://doi.org/10.
1016/j.jbiomech.2012.11.045

27. Modenese, L., Kohout, J.: Automated generation of three-dimensional complex
muscle geometries for use in personalised musculoskeletal models. Ann. Biomed.
Eng. 48, 1793–1804 (2020). https://doi.org/10.1007/s10439-020-02490-4

28. Müller, M., Heidelberger, B., Hennix, M., Ratcliff, J.: Position based dynamics.
J. Vis. Commun. Image Represent. 18, 109–118 (2007). https://doi.org/10.1016/
j.jvcir.2007.01.005

29. Oberhofer, K., Mithraratne, K., Stott, N.S., Anderson, I.A.: Anatomically-based
musculoskeletal modeling: prediction and validation of muscle deformation dur-
ing walking. Vis. Comput. 25(9), 843–851 (2009). https://doi.org/10.1007/s00371-
009-0314-8

30. Otake, Y., et al.: Patient-specific skeletal muscle fiber modeling from structure
tensor field of clinical CT images. In: Descoteaux, M., Maier-Hein, L., Franz, A.,
Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10433, pp.
656–663. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66182-7 75

31. Pellikaan, P., et al.: Evaluation of a morphing based method to estimate muscle
attachment sites of the lower extremity. J. Biomech. 47(5), 1144–1150 (2014).
https://doi.org/10.1016/j.jbiomech.2013.12.010

32. Romeo, M., Monteagudo, C., Sánchez-Quirós, D.: Muscle and fascia simulation
with extended position based dynamics. Comput. Graph. Forum 39(1), 134–146
(2019). https://doi.org/10.1111/cgf.13734

33. Shao, X., Liao, E., Zhang, F.: Improving SPH fluid simulation using position based
dynamics. IEEE Access 5, 13901–13908 (2017). https://doi.org/10.1109/ACCESS.
2017.2729601

34. Valente, G., Martelli, S., Taddei, F., Farinella, G., Viceconti, M.: Muscle discretiza-
tion affects the loading transferred to bones in lower-limb musculoskeletal models.
Proc. Inst. Mech. Eng. Part H J. Eng. Med. 226(2), 161–169 (2012)

35. Van Sint Jan, S.: Introducing anatomical and physiological accuracy in com-
puterized anthropometry for increasing the clinical usefulness of modeling sys-
tems. Crit. Rev. Phys. Rehabil. Med. 17, 149–174 (2005). https://doi.org/10.1615/
CritRevPhysRehabilMed.v17.i4.10

36. Viceconti, M., Clapworthy, G., Van Sint Jan, S.: The virtual physiological human
- a European initiative for in silico human modelling. J. Physiol. Sci.: JPS 58,
441–446 (2008). https://doi.org/10.2170/physiolsci.RP009908

37. Weinhandl, J.T., Bennett, H.J.: Musculoskeletal model choice influences hip joint
load estimations during gait. J. Biomech. 91, 124–132 (2019). https://doi.org/10.
1016/j.jbiomech.2019.05.015

38. Zhao, Y., et al.: Laplacian musculoskeletal deformation for patient-specific sim-
ulation and visualisation. In: 2013 17th International Conference on Information
Visualisation. IEEE (2013). https://doi.org/10.1109/iv.2013.67

https://doi.org/10.1016/j.jcp.2019.108905
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1145/3309486.3340247
https://doi.org/10.1016/j.jbiomech.2012.11.045
https://doi.org/10.1016/j.jbiomech.2012.11.045
https://doi.org/10.1007/s10439-020-02490-4
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1016/j.jvcir.2007.01.005
https://doi.org/10.1007/s00371-009-0314-8
https://doi.org/10.1007/s00371-009-0314-8
https://doi.org/10.1007/978-3-319-66182-7_75
https://doi.org/10.1016/j.jbiomech.2013.12.010
https://doi.org/10.1111/cgf.13734
https://doi.org/10.1109/ACCESS.2017.2729601
https://doi.org/10.1109/ACCESS.2017.2729601
https://doi.org/10.1615/CritRevPhysRehabilMed.v17.i4.10
https://doi.org/10.1615/CritRevPhysRehabilMed.v17.i4.10
https://doi.org/10.2170/physiolsci.RP009908
https://doi.org/10.1016/j.jbiomech.2019.05.015
https://doi.org/10.1016/j.jbiomech.2019.05.015
https://doi.org/10.1109/iv.2013.67

	Muscle Deformation Using Position Based Dynamics
	1 Introduction
	2 Position-Based Dynamics
	2.1 Distance Constraint
	2.2 Volume Constraint
	2.3 Local Shape Constraint

	3 Our Approach
	3.1 Anisotropy
	3.2 Collision Handling
	3.3 Detecting the Fixed Points

	4 Experimental Results
	4.1 Number of Solver Iterations
	4.2 Fixed Points
	4.3 Anisotropy, Volume and Other Constraints
	4.4 Muscle Fibre Lengths
	4.5 Deformation Speed

	5 Discussion
	6 Conclusion and Future Work
	References

